Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 26(1): 3-22, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36443028

RESUMO

Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.


Assuntos
Ecossistema , Cadeia Alimentar , Humanos , Ecologia
2.
Proc Biol Sci ; 287(1922): 20200108, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32156206

RESUMO

The classical theory of island biogeography, which predicts species richness using island area and isolation, has been expanded to include contributions from marine subsidies, i.e. subsidized island biogeography (SIB) theory. We tested the effects of marine subsidies on species diversity and population density on productive temperate islands, evaluating SIB predictions previously untested at comparable scales and subsidy levels. We found that the diversity of terrestrial breeding bird communities on 91 small islands (approx. 0.0001-3 km2) along the Central Coast of British Columbia, Canada were correlated most strongly with island area, but also with marine subsidies. Species richness increased and population density decreased with island area, but isolation had no measurable influence. Species richness was negatively correlated with marine subsidy, measured as forest-edge soil δ15N. Density, however, was higher on islands with higher marine subsidy, and a negative interaction between area and subsidy indicates that this effect is stronger on smaller islands, offering some support for SIB. Our study emphasizes how subsidies from the sea can shape diversity patterns on islands and can even exceed the importance of isolation in determining species richness and densities of terrestrial biota.


Assuntos
Aves , Filogeografia , Animais , Biodiversidade , Biota , Colúmbia Britânica , Ilhas , Densidade Demográfica
3.
Ecol Appl ; 29(5): e01897, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31125160

RESUMO

Diverse habitats composing coastal seascapes occur in close proximity, connected by the flux of materials and fauna across habitat boundaries. Understanding how seascape connectivity alters important ecosystem functions for fish, however, is not well established. For a seagrass-dominant seascape, we predicted that configuration and composition of adjacent habitats would alter habitat access for fauna and trophic subsidies, enhancing nursery function for juvenile fish. In an extensive Zostera marina seagrass meadow, we established sites adjacent to (1) highly complex and productive kelp forests (Nereocystis luetkeana), (2) unvegetated sand habitats, and (3) in the seagrass meadow interior. Using SCUBA, we conducted underwater observations of young-of the-year (YOY) rockfish (Sebastes spp.) recruitment across sites. Using generalized linear mixed effects models, we assessed the role of seascape adjacency relative to seagrass provisions (habitat complexity and prey) on YOY recruitment. YOY rockfish collections were used to trace sources of allochthonous vs. autochthonous primary production in the seagrass food web, via a δ13 C and δ15 N isotopic mixing model, and prey consumption using stomach contents. Overall, seagrass nursery function was strongly influenced by adjacent habitats and associated subsidies. Allochthonous N. luetkeana was the greatest source of energy assimilated by YOY rockfish within seagrass sites. In seagrass sites adjacent to N. luetkeana kelp forests, YOYs consumed higher quality prey, which corresponded with better body condition relative to sites adjacent to sand. Moreover, kelp forest adjacency enhanced YOY rockfish recruitment within the seagrass meadow, suggesting that habitat complexity is a key seascape feature influencing the nursery function of nearshore habitats. In general, to promote seascape connectivity, the conservation and restoration of nursery habitats should prioritize the inclusion of habitat mosaics of high structural complexity and productivity. We illustrate and emphasize the importance of using a seascape-level approach that considers linkages among habitats for the management of important nearshore ecosystem functions.


Assuntos
Ecossistema , Zosteraceae , Animais , Peixes , Cadeia Alimentar , Pradaria
4.
Ecology ; 98(11): 2860-2872, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28771689

RESUMO

Allochthonous resource movement across ecosystem boundaries creates episodic linkages between ecosystems. The sensitivity of the community to external resources of varying duration can alter the baseline upon which future pulses of allochthony can act. We explored the terrestrial ecosystem response to pulsed inputs of lake-derived resources with a manipulative experiment in a subarctic heathland where we assessed plant community and nutrient availability responses to additions of midge carcasses (Diptera: Chironomidae). Insect carcasses were added as either a one-time pulse or a 4-yr press to simulate differing durations of allochthony, which is common in the area. We found that midge pulses significantly elevated soil inorganic [N] in the first year (7× over background levels) but were significantly diminished (1.5×) by the second year after the initial pulse. The press treatment continued to elevate total soil inorganic [N] to 13× over background levels by the fourth year of midge additions, but then declined to 3.6× background in year 5 when experimental midge additions had ceased. In contrast to the soil inorganic N response, plant biomass was similar in pulse-addition and control plots over the course of the experiment. However, by the second year of the study plant biomass in press-addition plots were significantly higher than controls (>50%), and continued to increase over the 4 yr of the press treatment. Midge addition stimulated dominance of graminoids and thatch litter in plots that had previously been primarily heathland vegetation, a response that persisted 4 yr post-midge addition. Our findings suggest that soil and plant community responses to persistent insect carcass deposition (e.g., press) into heathland vegetation has the potential to carry forward in a way that modifies the baseline ecosystem conditions upon which additional allochthony may act.


Assuntos
Ecossistema , Animais , Regiões Árticas , Biomassa , Lagos , Nitrogênio , Plantas , Solo
5.
J Anim Ecol ; 86(5): 987-997, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28605012

RESUMO

Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies.


Assuntos
Distribuição Animal , Ecologia , Ecossistema , Animais , Movimento
6.
Ecology ; 105(3): e4262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351587

RESUMO

Large animals could be important drivers of spatial nutrient subsidies when they ingest resources in some habitats and release them in others, even moving nutrients against elevational gradients. In high Andean deserts, vicuñas (Vicugna vicugna) move daily between nutrient-rich wet meadows, where there is abundant water and forage but high risk of predation by pumas (Puma concolor), and nutrient-poor open plains with lower risk of predation. In all habitats, vicuñas defecate and urinate in communal latrines. We investigated how these latrines impacted soil and plant nutrient concentrations across three habitats in the Andean ecosystem (meadows, plains, and canyons) and used stable isotope analysis to explore the source of fecal nutrients in latrines. Latrine soils had higher concentrations of nitrogen, carbon, and other nutrients than did nonlatrine soils across all habitats. These inputs corresponded with an increase in plant quality (lower C:N) at latrine sites in plains and canyons, but not in meadows. Stable isotope mixing models suggest that ~7% of nutrients in plains latrines originated from vegetation in meadows, which is disproportionately higher than the relative proportion of meadow habitat (2.6%) in the study area. In contrast, ~68% of nutrients in meadow latrines appear to originate from plains and canyon vegetation, though these habitats made up nearly 98% of the study area. Vicuña diel movements thus appear to concentrate nutrients in latrines within habitats and to drive cross-habitat nutrient subsidies, with disproportionate transport from low-lying, nutrient-rich meadows to more elevated, nutrient-poor plains. When these results are scaled up to the landscape scale, the amount of nitrogen and phosphorus subsidized in soil at plains latrines was of the same order of magnitude as estimates of annual atmospheric nitrogen and phosphorus deposition for this region (albeit far more localized and patchy). Thus, vicuña-mediated nutrient redistribution and deposition appears to be an important process impacting ecosystem functioning in arid Andean environments, on par with other major inputs of nutrients to the system.


Assuntos
Camelídeos Americanos , Animais , Ecossistema , Nitrogênio , Nutrientes , Fósforo , Solo , Isótopos
7.
Ecol Evol ; 12(9): e9270, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177118

RESUMO

Although species richness can be determined by different mechanisms at different spatial scales, the role of scale in the effects of marine inputs on island biogeography has not been studied explicitly. Here, we evaluated the potential influence of island characteristics and marine inputs (seaweed wrack biomass and marine-derived nitrogen in the soil) on plant species richness at both a local (plot) and regional (island) scale on 92 islands in British Columbia, Canada. We found that the effects of subsidies on species richness depend strongly on spatial scale. Despite detecting no effects of marine subsidies at the island scale, we found that as plot level subsidies increased, species richness decreased; plots with more marine-derived nitrogen in the soil hosted fewer plant species. We found no effect of seaweed wrack at either scale. To identify potential mechanisms underlying the decrease in diversity, we fit a spatially explicit joint species distribution model to evaluate species level responses to marine subsidies and effects of biotic interactions among species. We found mixed evidence for competition for both light and nutrients, and cannot rule out an alternative mechanism; the observed decrease in species richness may be due to disturbances associated with animal-mediated nutrient deposits, particularly those from North American river otters (Lontra canadensis). By evaluating the scale-dependent effects of marine subsidies on island biogeographic patterns of plants and revealing likely mechanisms that act on community composition, we provide novel insights on the scale dependence of a fundamental ecological theory, and on the rarely examined links between marine and terrestrial ecosystems often bridged by animal vectors.

8.
Ambio ; 48(1): 61-73, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29637473

RESUMO

Migratory species provide important benefits to society, but their cross-border conservation poses serious challenges. By quantifying the economic value of ecosystem services (ESs) provided across a species' range and ecological data on a species' habitat dependence, we estimate spatial subsidies-how different regions support ESs provided by a species across its range. We illustrate this method for migratory northern pintail ducks in North America. Pintails support over $101 million USD annually in recreational hunting and viewing and subsistence hunting in the U.S. and Canada. Pintail breeding regions provide nearly $30 million in subsidies to wintering regions, with the "Prairie Pothole" region supplying over $24 million in annual benefits to other regions. This information can be used to inform conservation funding allocation among migratory regions and nations on which the pintail depends. We thus illustrate a transferrable method to quantify migratory species-derived ESs and provide information to aid in their transboundary conservation.


Assuntos
Patos , Ecossistema , Migração Animal , Animais , Canadá , América do Norte , Estações do Ano
9.
Biol Rev Camb Philos Soc ; 94(5): 1761-1773, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31134728

RESUMO

Animal movements are important drivers of nutrient redistribution that can affect primary productivity and biodiversity across various spatial scales. Recent work indicates that incorporating these movements into ecosystem models can enhance our ability to predict the spatio-temporal distribution of nutrients. However, the role of animal behaviour in animal-mediated nutrient transport (i.e. active subsidies) remains under-explored. Here we review the current literature on active subsidies to show how the behaviour of active subsidy agents makes them both ecologically important and qualitatively distinct from abiotic processes (i.e. passive subsidies). We first propose that animal movement patterns can create similar ecological effects (i.e. press and pulse disturbances) in recipient ecosystems, which can be equal in magnitude to or greater than those of passive subsidies. We then highlight three key behavioural features distinguishing active subsidies. First, organisms can transport nutrients counter-directionally to abiotic forces and potential energy gradients (e.g. upstream). Second, unlike passive subsidies, organisms respond to the patterns of nutrients that they generate. Third, animal agents interact with each other. The latter two features can form positive- or negative-feedback loops, creating patterns in space or time that can reinforce nutrient hotspots in places of mass aggregations and/or create lasting impacts within ecosystems. Because human-driven changes can affect both the space-use of active subsidy species and their composition at both population (i.e. individual variation) and community levels (i.e. species interactions), predicting patterns in nutrient flows under future modified environmental conditions depends on understanding the behavioural mechanisms that underlie active subsidies and variation among agents' contributions. We conclude by advocating for the integration of animal behaviour, animal movement data, and individual variation into future conservation efforts in order to provide more accurate and realistic assessments of changing ecosystem function.


Assuntos
Comportamento Animal/fisiologia , Nutrientes/fisiologia , Animais , Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Florestas , Insetos Vetores/fisiologia , Lagos , Nutrientes/provisão & distribuição , Oceanos e Mares , Rios , Fatores de Tempo , Vento
10.
Oecologia ; 118(3): 324-332, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28307276

RESUMO

Energy and nutrient fluxes across habitat boundaries can exert profound direct and indirect effects on the dynamics of recipient systems. Transport from land to water is common and well studied; here, we document a less recognized process, substantial flows from water to land. On hyperarid, naturally nutrient poor islands in the Gulf of California, nutrient input via seabird guano directly increases N and P concentrations up to 6-fold in soils; these nutrients enrich plants. Nutrients in a long-lived cactus, a short-lived shrub, and annuals were 1.6- to 2.4-fold greater on bird versus nonbird islands. Because plant quality affects consumer growth and reproduction, we suggest that nutrient enrichment via guano ramifies to affect the entire food web on these islands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA