Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653236

RESUMO

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Análise Espacial , Transcriptoma/genética , Microambiente Tumoral , Proteômica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Cell ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38917789

RESUMO

Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.

3.
Cell ; 186(1): 194-208.e18, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580914

RESUMO

The diversity and complex organization of cells in the brain have hindered systematic characterization of age-related changes in its cellular and molecular architecture, limiting our ability to understand the mechanisms underlying its functional decline during aging. Here, we generated a high-resolution cell atlas of brain aging within the frontal cortex and striatum using spatially resolved single-cell transcriptomics and quantified changes in gene expression and spatial organization of major cell types in these regions over the mouse lifespan. We observed substantially more pronounced changes in cell state, gene expression, and spatial organization of non-neuronal cells over neurons. Our data revealed molecular and spatial signatures of glial and immune cell activation during aging, particularly enriched in the subcortical white matter, and identified both similarities and notable differences in cell-activation patterns induced by aging and systemic inflammatory challenge. These results provide critical insights into age-related decline and inflammation in the brain.


Assuntos
Envelhecimento , Substância Branca , Camundongos , Animais , Envelhecimento/genética , Encéfalo/metabolismo , Neuroglia , Longevidade , Transcriptoma , Análise de Célula Única
4.
Cell ; 186(20): 4271-4288.e24, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37699390

RESUMO

Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.

5.
Cell ; 186(9): 2002-2017.e21, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37080201

RESUMO

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq) that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale electrical activity and profile single-cell gene expression from the same cells across intact biological networks, including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardiomyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysiology and gene expression at the cellular level, jointly defining cell states and developmental trajectories. Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysiology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


Assuntos
Eletrônica , Análise de Sequência de RNA , Humanos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/metabolismo , Análise de Célula Única , Transcriptoma , Eletrônica/métodos
6.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38091994

RESUMO

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Assuntos
Encéfalo , Transcriptoma , Humanos , Neurônios Dopaminérgicos , Neurônios GABAérgicos , Mesencéfalo , Neocórtex , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo
7.
Cell ; 186(25): 5620-5637.e16, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065082

RESUMO

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Microambiente Tumoral , Humanos , Instabilidade Cromossômica/genética , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Quinases Ativadas por p21/genética , Filogenia , Mutação , Progressão da Doença , Prognóstico
8.
Cell ; 186(26): 5677-5689, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38065099

RESUMO

RNA sequencing in situ allows for whole-transcriptome characterization at high resolution, while retaining spatial information. These data present an analytical challenge for bioinformatics-how to leverage spatial information effectively? Properties of data with a spatial dimension require special handling, which necessitate a different set of statistical and inferential considerations when compared to non-spatial data. The geographical sciences primarily use spatial data and have developed methods to analye them. Here we discuss the challenges associated with spatial analysis and examine how we can take advantage of practice from the geographical sciences to realize the full potential of spatial information in transcriptomic datasets.


Assuntos
Análise de Dados , Análise Espacial , Transcriptoma , Biologia Computacional , Perfilação da Expressão Gênica , Transcriptoma/genética
9.
Cell ; 186(2): 363-381.e19, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669472

RESUMO

Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Adenocarcinoma/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Processamento de Imagem Assistida por Computador , Oncogenes , Microambiente Tumoral
10.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35512705

RESUMO

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Assuntos
Organogênese , Transcriptoma , Animais , DNA/genética , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica/métodos , Mamíferos/genética , Camundongos , Organogênese/genética , Gravidez , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
11.
Cell ; 185(14): 2591-2608.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803246

RESUMO

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Linfócitos T CD8-Positivos/patologia , Ecossistema , Humanos , RNA-Seq
12.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021063

RESUMO

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Assuntos
Evolução Biológica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteogenômica , Animais , Núcleo Celular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Homeostase , Humanos , Células de Kupffer/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Lipídeos/química , Fígado/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genética
13.
Cell ; 185(7): 1223-1239.e20, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35290801

RESUMO

While CRISPR screens are helping uncover genes regulating many cell-intrinsic processes, existing approaches are suboptimal for identifying extracellular gene functions, particularly in the tissue context. Here, we developed an approach for spatial functional genomics called Perturb-map. We applied Perturb-map to knock out dozens of genes in parallel in a mouse model of lung cancer and simultaneously assessed how each knockout influenced tumor growth, histopathology, and immune composition. Moreover, we paired Perturb-map and spatial transcriptomics for unbiased analysis of CRISPR-edited tumors. We found that in Tgfbr2 knockout tumors, the tumor microenvironment (TME) was converted to a fibro-mucinous state, and T cells excluded, concomitant with upregulated TGFß and TGFß-mediated fibroblast activation, indicating that TGFß-receptor loss on cancer cells increased TGFß bioavailability and its immunosuppressive effects on the TME. These studies establish Perturb-map for functional genomics within the tissue at single-cell resolution with spatial architecture preserved and provide insight into how TGFß responsiveness of cancer cells can affect the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genômica , Camundongos , Neoplasias/genética , Fator de Crescimento Transformador beta/genética
14.
Cell ; 185(24): 4621-4633.e17, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36368323

RESUMO

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.


Assuntos
Dor Crônica , Transcriptoma , Camundongos , Animais , DNA , RNA , Géis
15.
Cell ; 185(20): 3770-3788.e27, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179669

RESUMO

Realizing the full utility of brain organoids to study human development requires understanding whether organoids precisely replicate endogenous cellular and molecular events, particularly since acquisition of cell identity in organoids can be impaired by abnormal metabolic states. We present a comprehensive single-cell transcriptomic, epigenetic, and spatial atlas of human cortical organoid development, comprising over 610,000 cells, from generation of neural progenitors through production of differentiated neuronal and glial subtypes. We show that processes of cellular diversification correlate closely to endogenous ones, irrespective of metabolic state, empowering the use of this atlas to study human fate specification. We define longitudinal molecular trajectories of cortical cell types during organoid development, identify genes with predicted human-specific roles in lineage establishment, and uncover early transcriptional diversity of human callosal neurons. The findings validate this comprehensive atlas of human corticogenesis in vitro as a resource to prime investigation into the mechanisms of human cortical development.


Assuntos
Córtex Cerebral , Organoides , Diferenciação Celular , Córtex Cerebral/metabolismo , Humanos , Neurogênese , Neurônios , Organoides/metabolismo
16.
Cell ; 184(13): 3559-3572.e22, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34115981

RESUMO

Spatial barcoding technologies have the potential to reveal histological details of transcriptomic profiles; however, they are currently limited by their low resolution. Here, we report Seq-Scope, a spatial barcoding technology with a resolution comparable to an optical microscope. Seq-Scope is based on a solid-phase amplification of randomly barcoded single-molecule oligonucleotides using an Illumina sequencing platform. The resulting clusters annotated with spatial coordinates are processed to expose RNA-capture moiety. These RNA-capturing barcoded clusters define the pixels of Seq-Scope that are ∼0.5-0.8 µm apart from each other. From tissue sections, Seq-Scope visualizes spatial transcriptome heterogeneity at multiple histological scales, including tissue zonation according to the portal-central (liver), crypt-surface (colon) and inflammation-fibrosis (injured liver) axes, cellular components including single-cell types and subtypes, and subcellular architectures of nucleus and cytoplasm. Seq-Scope is quick, straightforward, precise, and easy-to-implement and makes spatial single-cell analysis accessible to a wide group of biomedical researchers.


Assuntos
Microscopia , Transcriptoma/genética , Animais , Núcleo Celular/genética , Colo/patologia , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Inflamação/genética , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , RNA/metabolismo , Análise de Célula Única
17.
Cell ; 184(3): 810-826.e23, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406409

RESUMO

Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer's patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.


Assuntos
Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Análise de Célula Única , Células Endoteliais/citologia , Sistema Nervoso Entérico/citologia , Feto/embriologia , Fibroblastos/citologia , Humanos , Imunidade , Enteropatias/congênito , Enteropatias/patologia , Mucosa Intestinal/crescimento & desenvolvimento , Intestinos/irrigação sanguínea , Ligantes , Mesoderma/citologia , Neovascularização Fisiológica , Pericitos/citologia , Células-Tronco/citologia , Fatores de Tempo , Fatores de Transcrição/metabolismo
18.
Cell ; 182(4): 976-991.e19, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32702314

RESUMO

Although complex inflammatory-like alterations are observed around the amyloid plaques of Alzheimer's disease (AD), little is known about the molecular changes and cellular interactions that characterize this response. We investigate here, in an AD mouse model, the transcriptional changes occurring in tissue domains in a 100-µm diameter around amyloid plaques using spatial transcriptomics. We demonstrate early alterations in a gene co-expression network enriched for myelin and oligodendrocyte genes (OLIGs), whereas a multicellular gene co-expression network of plaque-induced genes (PIGs) involving the complement system, oxidative stress, lysosomes, and inflammation is prominent in the later phase of the disease. We confirm the majority of the observed alterations at the cellular level using in situ sequencing on mouse and human brain sections. Genome-wide spatial transcriptomics analysis provides an unprecedented approach to untangle the dysregulated cellular network in the vicinity of pathogenic hallmarks of AD and other brain diseases.


Assuntos
Doença de Alzheimer/patologia , Análise de Sequência de DNA/métodos , Transcriptoma , Doença de Alzheimer/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Estresse Oxidativo/genética
19.
Cell ; 180(5): 833-846.e16, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142677

RESUMO

Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Interleucina-6/genética , Receptores de Interleucina-6/genética , Regeneração/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais/genética
20.
Cell ; 182(2): 497-514.e22, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579974

RESUMO

To define the cellular composition and architecture of cutaneous squamous cell carcinoma (cSCC), we combined single-cell RNA sequencing with spatial transcriptomics and multiplexed ion beam imaging from a series of human cSCCs and matched normal skin. cSCC exhibited four tumor subpopulations, three recapitulating normal epidermal states, and a tumor-specific keratinocyte (TSK) population unique to cancer, which localized to a fibrovascular niche. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing TSK cells as a hub for intercellular communication. Multiple features of potential immunosuppression were observed, including T regulatory cell (Treg) co-localization with CD8 T cells in compartmentalized tumor stroma. Finally, single-cell characterization of human tumor xenografts and in vivo CRISPR screens identified essential roles for specific tumor subpopulation-enriched gene networks in tumorigenesis. These data define cSCC tumor and stromal cell subpopulations, the spatial niches where they interact, and the communicating gene networks that they engage in cancer.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Genômica/métodos , Neoplasias Cutâneas/metabolismo , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , RNA-Seq , Análise de Célula Única , Pele/metabolismo , Neoplasias Cutâneas/patologia , Transcriptoma , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA