Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Magn Reson Med ; 91(3): 1209-1224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37927216

RESUMO

PURPOSE: We model the performance of parallel transmission (pTx) arrays with 8, 16, 24, and 32 channels and varying loop sizes built on a close-fitting helmet for brain imaging at 7 T and compare their local specific absorption rate (SAR) and flip-angle performances to that of birdcage coil (used as a baseline) and cylindrical 8-channel and 16-channel pTx coils (single-row and dual-row). METHODS: We use the co-simulation approach along with MATLAB scripting for batch-mode simulation of the coils. For each coil, we extracted B1 + maps and SAR matrices, which we compressed using the virtual observation points algorithm, and designed slice-selective RF shimming pTx pulses with multiple local SAR and peak power constraints to generate L-curves in the transverse, coronal, and sagittal orientations. RESULTS: Helmet designs outperformed cylindrical pTx arrays at a constant number of channels in the flip-angle uniformity at a constant local SAR metric: up to 29% for 8-channel arrays, and up to 34% for 16-channel arrays, depending on the slice orientation. For all helmet arrays, increasing the loop diameter led to better local SAR versus flip-angle uniformity tradeoffs, although this effect was more pronounced for the 8-channel and 16-channel systems than the 24-channel and 32-channel systems, as the former have more limited degrees of freedom and therefore benefit more from loop-size optimization. CONCLUSION: Helmet pTx arrays significantly outperformed cylindrical arrays with the same number of channels in local SAR and flip-angle uniformity metrics. This improvement was especially pronounced for non-transverse slice excitations. Loop diameter optimization for helmets appears to favor large loops, compatible with nearest-neighbor decoupling by overlap.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Imagens de Fantasmas
2.
Sensors (Basel) ; 24(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475194

RESUMO

This article presents an in-depth investigation of wearable microwave antenna sensors (MASs) used for vital sign detection (VSD) and lung water level (LWL) monitoring. The study looked at two different types of MASs, narrowband (NB) and ultra-wideband (UWB), to decide which one was better. Unlike recent wearable respiratory sensors, these antennas are simple in design, low-profile, and affordable. The narrowband sensor employs an offset-feed microstrip transmission line, which has a bandwidth of 240 MHz at -10 dB reflection coefficient for the textile substrate. The UWB microwave sensor uses a CPW-fed line to excite an unbalanced U-shaped radiator, offering an extended simulated operating bandwidth from 1.5 to 10 GHz with impedance matching ≤-10 dB. Both types of microwave sensors are designed on a flexible RO 3003 substrate and textile conductive fabric attached to a cotton substrate. The specific absorption rate (SAR) of the sensors is measured at different resonant frequencies on 1 g and 10 g of tissue, according to the IEEE C95.3 standard, and both sensors meet the standard limit of 1.6 W/kg and 2 W/kg, respectively. A simple peak-detection algorithm is used to demonstrate high accuracy in the detection of respiration, heartbeat, and lung water content. Based on the experimental results on a child and an adult volunteer, it can be concluded that UWB MASs offer superior performance when compared to NB sensors.


Assuntos
Micro-Ondas , Respiração , Humanos , Adulto , Criança , Frequência Cardíaca , Taxa Respiratória , Pulmão
3.
Sensors (Basel) ; 23(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112139

RESUMO

Microwave hyperthermia using the phased array applicator is a non-invasive treatment modality for breast cancer. Hyperthermia treatment planning (HTP) is critical to accurately treating breast cancer and avoiding damage to the patient's healthy tissue. A global optimization algorithm, differential evolution (DE) algorithm, has been applied to optimize HTP for breast cancer and its ability to improve the treatment effect was proved by electromagnetic (EM) and thermal simulation results. DE algorithm is compared to time reversal (TR) technology, particle swarm optimization (PSO) algorithm, and genetic algorithm (GA) in HTP for breast cancer in terms of convergence rate and treatment results, such as treatment indicators and temperature parameters. The current approaches in breast cancer microwave hyperthermia still have the problem of hotspots in healthy tissue. DE enhances focused microwave energy absorption into the tumor and reduces the relative energy of healthy tissue during hyperthermia treatment. By comparing the treatment results of each objective function used in DE, the DE algorithm with hotspot to target quotient (HTQ) as the objective function has outstanding performance in HTP for breast cancer, which can increase the focused microwave energy of the tumor and decrease the damage to healthy tissue.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Humanos , Feminino , Hipertermia Induzida/métodos , Micro-Ondas/uso terapêutico , Neoplasias da Mama/terapia , Calefação , Temperatura
4.
Electromagn Biol Med ; 42(4): 163-181, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-38156657

RESUMO

This research article presents a study that uses microwave frequencies (ISM band) for treatment of skin cancer by heating the malignant cells on skin with a Microwave Hyperthermia (MWHT) applicator. The proposed MWHT applicator has been designed as an Archimedean Spiral Microstrip Patch Antenna (AMSPA) of dimensions 38 × 38 × 1.64 mm3 backed with a Meshed-shaped AMC (48 × 48 × 3.27mm3) reflector, placed at an optimized distance of 12 mm from AMSPA. The proposed AMSPA is designed as a single spiral resonator and fabricated on FR-4 substrate, excited using a feed network. The proposed AMSPA shows a resonance at 2.5 GHz with an impedance BW of 260 MHz (2.37-2.63 GHz) and peak gain of 3.20 dB with a bidirectional radiation pattern. An AMC is placed at its backside that can be exploited as a phase-compensation surface to attain an in-phase profile for directive emission and improve the BW upto 470 MHz, peak gain to 6.8 dB and also enhance the front-to-back ratio of the radiating antenna with radiation efficiency of 80%. The simulated environment for hyperthermia analysis is set up using penne's Bio-Heat equations to deliver microwave energy to the bio-mimic, that leads to a rise in temperature over the designed bio-mimic in CST MWS in the range of 41-45°C. The validation of MWHT radiation properties and temperature rise inside the malignancy of phantom is carried out by fabricating the bio-mimic using gelatine, vegetable oils and glycerol. This set up enhances the penetration-depth of EM waves inside the tri-layered phantom up-to 29.5 mm with Effective Field Surface of 36 × 36 mm2 and SAR of 8 W/Kg.


This article discusses the design and development of a device designed to treat skin cancer, specifically melanoma. This device is called a Microwave Hyperthermia (MWHT) applicator. The applicator sends out focused waves of microwave energy but at a specific frequency of ISM band. These waves heat up a model of human skin, simulating what would happen if this is used on a real person with cancer. The goal is to heat the cancer to around 45°C, which can help treat it. The special thing about this applicator is that it's designed to be very compact and have good gain. It heats up the cancer without causing harm to the healthy tissues nearby. The researchers tested it extensively and found that it works well. It has a wide range of effectiveness for different tumor sizes and depths within the skin. To make sure it is safe and accurate, a model of a human forearm using materials like gelatin and water has been prepared. Then used the applicator on this model and measured the temperature increase. After about 40 minutes of exposure, there is a temperature rise of about 45 degrees Celsius. Thus this article is about a device that uses special waves to heat up and treat skin cancer. It's designed to be safe and effective, and the tests show it works on a model of human skin. This could be a useful tool for treating skin cancer in the future.


Assuntos
Hipertermia Induzida , Neoplasias Cutâneas , Humanos , Hipertermia Induzida/métodos , Micro-Ondas , Neoplasias Cutâneas/terapia , Temperatura , Temperatura Alta
5.
Sensors (Basel) ; 22(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36502257

RESUMO

In recent years, there has been a surge of interest in the field of wireless communication for designing a monitoring system to observe the activity of the human body remotely. With the use of wireless body area networks (WBAN), chronic health and physical activity may be tracked without interfering with routine lifestyle. This crucial real-time data transmission requires low power, high speed, and broader bandwidth communication. Ultrawideband (UWB) technology has been explored for short-range and high-speed applications to cater to these demands over the last decades. The antenna is a crucial component of the WBAN system, which lowers the overall system's performance. The human body's morphology necessitates a flexible antenna. In this article, we comprehensively survey the relevant flexible materials and their qualities utilized to develop the flexible antenna. Further, we retrospectively investigate the design issues and the strategies employed in designing the flexible UWB antenna, such as incorporating the modified ground layer, including the parasitic elements, coplanar waveguide, metamaterial loading, etc. To improve isolation and channel capacity in WBAN applications, the most recent decoupling structures proven in UWB MIMO technology are presented.


Assuntos
Tecnologia sem Fio , Humanos , Estudos Retrospectivos , Monitorização Fisiológica
6.
Sensors (Basel) ; 22(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890888

RESUMO

This paper presents the performance comparison of a dual-band conventional antenna with a split-ring resonator (SRR)- and electromagnetic bandgap (EBG)-based dual-band design operating at 2.4 GHz and 5.4 GHz. The compactness and dual-frequency operation in the legacy Wi-Fi range of this design make it highly favorable for wearable sensor network-based Internet of Things (IoT) applications. Considering the current need for wearable antennas, wash cotton (with a relative permittivity of 1.51) is used as a substrate material for both conventional and metamaterial-based antennas. The radiation characteristics of the conventional antenna are compared with the EBG and SRR ground planes-based antennas in terms of return loss, gain, and efficiency. It is found that the SRR-based antenna is more efficient in terms of gain and surface wave suppression as well as more compact in comparison with its two counterparts. The compared results are found to be based on two distinct frequency ranges, namely, 2.4 GHz and 5.4 GHz. The suggested SRR-based antenna exhibits improved performance at 5.4 GHz, with gains of 7.39 dbi, bandwidths of 374 MHz, total efficiencies of 64.7%, and HPBWs of 43.2 degrees. The measurements made in bent condition are 6.22 db, 313 MHz, 52.45%, and 22.3 degrees, respectively. The three considered antennas (conventional, EBG-based, and SRR-based) are designed with a compact size to be well-suited for biomedical sensors, and specific absorption rate (SAR) analysis is performed to ensure user safety. In addition, the performance of the proposed antenna under bending conditions is also considered to present a realistic approach for a practical antenna design.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento
7.
Sensors (Basel) ; 22(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36236715

RESUMO

The ever-increasing demand and need for high-speed communication have generated intensive research in the field of fifth-generation (5G) technology. Sub-6 GHz 5G mid-band spectrum is the focus of the researchers due to its meritorious ease of deployment in the current scenario with the already existing infrastructure of the 4G-LTE system. The 5G technology finds applications in enormous fields that require high data rates, low latency, and stable radiation patterns. One of the major sectors that benefit from the outbreak of 5G is the field of flexible electronics. Devices that are compact need an antenna to be flexible, lightweight, conformal, and still have excellent performance characteristics. Flexible antennas used in wireless body area networks (WBANs) need to be highly conformal to be bent according to the different curvatures of the human body at different body parts. The specific absorption rate (SAR) must be at a permissible level for such an antenna to be suited for WBAN applications. This paper gives a comprehensive review of the current state of the art flexible antennas in a sub-6 GHz 5G band. Furthermore, this paper gives a key insight into the materials for a flexible antenna, the parameters considered for the design of a flexible antenna for 5G, the challenges for the design, and the implementation of a flexible antenna for 5G.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Tecnologia
8.
Electromagn Biol Med ; 41(2): 184-200, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35352614

RESUMO

A strong evidence of the effects of radiation absorption on the living community together with a better solution to reduce the radiation intensity without compromising the usage of wireless communication systems is presented. This study analyses the radiation effects on living things and validates the proposed techniques for specific absorption rate (SAR) value reduction at 2.45 GHz. To reduce these radiation impacts on the living community, proper shielding from the radiation and effectively reorienting antenna radiation patterns are the solutions suggested. An analogous antenna configuration in wireless communication systems - a coplanar waveguide fed loop antenna is considered and an open loop resonator (OLR) optimized in ANSYS HFSS at 2.45 GHz is incorporated on the back side of the proposed antenna for achieving SAR value reduction. Theoretical and experimental validation is carried out by measuring the variation in absorption power on each vegetable sample using vector network analyzer E5080A. The existence of OLR on the back side of the antenna reduces the absorption power upto 2 dB. From experimental validation, the proposed technique provides 88% to 98% reduction in SAR value when tested in each sample. Along with this OLR exhibits the capability to enhance the shielding characteristics to the controlled environment of experimental setup for analyzing the stages of seed germination, which helps in reducing the reported radiation effects and growth retardation. The proposed method of EMR reduction with miniaturized planar resonator can be effectively used in the communication systems operating at 2.45 GHz for creating a reduced radiation environment.


Assuntos
Absorção de Radiação , Tecnologia sem Fio , Radiação Eletromagnética , Desenho de Equipamento
9.
Electromagn Biol Med ; 41(2): 230-255, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35438055

RESUMO

In this paper, we review the literature on three important exposure metrics that are inadequately represented in most major radiofrequency radiation (RFR) exposure guidelines today: intensity, exposure duration, and signal modulation. Exposure intensity produces unpredictable effects as demonstrated by nonlinear effects. This is most likely caused by the biological system's ability to adjust and compensate but could lead to eventual biomic breakdown after prolonged exposure. A review of 112 low-intensity studies reveals that biological effects of RFR could occur at a median specific absorption rate of 0.0165 W/kg. Intensity and exposure duration interact since the dose of energy absorbed is the product of intensity and time. The result is that RFR behaves like a biological "stressor" capable of affecting numerous living systems. In addition to intensity and duration, man-made RFR is generally modulated to allow information to be encrypted. The effects of modulation on biological functions are not well understood. Four types of modulation outcomes are discussed. In addition, it is invalid to make direct comparisons between thermal energy and radiofrequency electromagnetic energy. Research data indicate that electromagnetic energy is more biologically potent in causing effects than thermal changes. The two likely functionthrough different mechanisms. As such, any current RFR exposure guidelines based on acute continuous-wave exposure are inadequate for health protection.


Assuntos
Exposição à Radiação , Ondas de Rádio , Humanos , Exposição à Radiação/efeitos adversos , Ondas de Rádio/efeitos adversos
10.
Magn Reson Med ; 85(2): 1093-1103, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32810320

RESUMO

PURPOSE: To improve the specific absorption rate (SAR) compression model capability in parallel transmission (pTx) MRI systems. METHODS: A k-means clustering method is proposed to group voxels with similar SAR behaviors in the scanned object, providing a controlled upper-bounded estimation of peak local SARs. This k-means compression model and the conventional virtual observation point (VOP) model were tested in a pTx MRI framework. The pTx pulse design with different SAR controlling schemes was simulated using a numerical human head model and an eight-channel 7T coil array. Multiple criteria (including RF power, global and peak local SARs, and excitation accuracy) were compared for the performance testing. RESULTS: The k-means compression model generated a narrower overestimation bound, leading to a more accurate local SAR estimation. Among different pTx pulse design approaches, the k-means compression model showed the best trade-off between the SAR and excitation accuracy. CONCLUSIONS: The developed SAR compression model is advantageous for pTx framework given the narrower overestimation bound and control over the compression ratio. Results also illustrate that a moderate increase of maximum RF power can be useful for reducing the maximum local SAR deposition.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Humanos , Imagens de Fantasmas
11.
Magn Reson Med ; 85(5): 2462-2476, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33226685

RESUMO

PURPOSE: The purpose of this study is to demonstrate a method for specific absorption rate (SAR) reduction for 2D T2 -FLAIR MRI sequences at 7 T by predicting the required adiabatic radiofrequency (RF) pulse power and scaling the RF amplitude in a slice-wise fashion. METHODS: We used a time-resampled frequency-offset corrected inversion (TR-FOCI) adiabatic pulse for spin inversion in a T2 -FLAIR sequence to improve B1+ homogeneity and calculated the pulse power required for adiabaticity slice-by-slice to minimize the SAR. Drawing on the implicit B1+ inhomogeneity in a standard localizer scan, we acquired 3D AutoAlign localizers and SA2RAGE B1+ maps in 28 volunteers. Then, we trained a convolutional neural network (CNN) to estimate the B1+ profile from the localizers and calculated pulse scale factors for each slice. We assessed the predicted B1+ profiles and the effect of scaled pulse amplitudes on the FLAIR inversion efficiency in oblique transverse, sagittal, and coronal orientations. RESULTS: The predicted B1+ amplitude maps matched the measured ones with a mean difference of 9.5% across all slices and participants. The slice-by-slice scaling of the TR-FOCI inversion pulse was most effective in oblique transverse orientation and resulted in a 1 min and 30 s reduction in SAR induced delay time while delivering identical image quality. CONCLUSION: We propose a SAR reduction technique based on the estimation of B1+ profiles from standard localizer scans using a CNN and show that scaling the inversion pulse power slice-by-slice for FLAIR sequences at 7T reduces SAR and scan time without compromising image quality.


Assuntos
Aprendizado Profundo , Encéfalo , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética , Ondas de Rádio , Cintilografia
12.
NMR Biomed ; 34(3): e4441, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33354828

RESUMO

Electromagnetic simulations are an important tool for the safety assessment of RF coils. They are a useful resource for MRI RF coil designers, especially when complemented with experimental measurements and testing using physical phantoms. Regular-shaped (spherical/cylindrical) homogeneous phantoms are the MRI standard for RF testing but are somewhat inaccurate when compared with anthropomorphic anatomies, especially at high frequencies. In this work, using a recently developed anthropomorphic heterogeneous human head phantom, studies were performed to analyze the scattering parameters (S-parameters) and the electric and magnetic field distributions using (1) the B1+ field mapping method on a 7 T human MRI scanner and (2) numerical full-wave electromagnetic simulations. All studies used the following: a recently developed six-compartment refillable 3D-printed anthropomorphic head phantom (developed from MRI scans obtained in vivo), where the phantom itself is filled in its entirety with either heterogeneous loading, or homogeneous brain or water loading, in vivo imaging, and a commercial homogeneous spherical water phantom. Our results determined that the calculated S-parameters for all the anthropomorphic head phantom models were comparable to the model that is based on the volunteer (within 17% difference of the reflection coefficient value) but differed for the commercial homogeneous spherical water phantom (within 45% difference). The experimentally measured B1+ field maps of the anthropomorphic heterogeneous and homogeneous brain head phantoms were most comparable to the in vivo measured values. The numerical simulations also show that both the anthropomorphic homogeneous water and brain phantom models were less accurate in terms of electric field intensities/distributions when compared with the segmented in-vivo-based head model and the anthropomorphic heterogeneous head phantom model. The presented data highlights the differences between the physical phantoms/phantom models, and the in vivo measurements/segmented in-vivo-based head model. The results demonstrate the usefulness of 3D-printed anthropomorphic phantoms for RF coil evaluation and testing.


Assuntos
Campos Eletromagnéticos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Eletricidade , Cabeça , Humanos , Análise Numérica Assistida por Computador
13.
Sensors (Basel) ; 21(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960443

RESUMO

This paper proposes a high-order MIMO antenna operating at 3.5 GHz for a 5G new radio. Using an eighth-mode substrate integrated waveguide (EMSIW) cavity and considering a typical smartphone scenario, a two-element MIMO antenna is developed and extended to a twelve-element MIMO. These MIMO elements are closely spaced, and by employing multiple diversity techniques, high isolation is achieved without using a decoupling network. The asymmetric EMSIW structures resulted in radiation pattern diversity, and their orthogonal placement provides polarization diversity. The radiation characteristics and diversity performance are parametrically optimized for a two-element MIMO antenna. The experimental results exhibited 6.0 dB and 10.0 dB bandwidths of 250 and 100 MHz, respectively. The measured and simulated radiation patterns are closely matched with a peak gain of 3.4 dBi and isolation ≥36 dB. Encouraged with these results, higher-order MIMO, namely, four- and twelve-element MIMO are investigated, and isolation ≥35 and ≥22 dB are achieved, respectively. The channel capacity is found equal to 56.37 bps/Hz for twelve-element MIMO, which is nearly 6.25 times higher than the two-element counterpart. The hand and head proximity analysis reveal that the proposed antenna performances are within the acceptable limit. A detailed comparison with the previous works demonstrates that the proposed antenna offers a simple, low-cost, and compact MIMO antenna design solution with a high diversity performance.


Assuntos
Smartphone , Tecnologia sem Fio , Desenho de Equipamento , Registros
14.
IEEE Trans Electromagn Compat ; 63(5): 1748-1756, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34675444

RESUMO

This study investigates the radiofrequency (RF) induced heating in a pediatric whole-body voxel model with a high-density electroencephalogram (hd-EEG) net during magnetic resonance imaging (MRI) at 3 Tesla. A total of three cases were studied: no net (NoNet), a resistive hd-EEG (NeoNet), and a copper (CuNet) net. The maximum values of specific absorption rate averaged over 10g-mass (10gSAR) in the head were calculated with the NeoNet was 12.51 W/kg and in the case of the NoNet was 12.40 W/kg. In contrast, the CuNet case was 17.04 W/Kg. Temperature simulations were conducted to determine the RF-induced heating without and with hd-EEG nets (NeoNet and CuNet) during an MRI scan using an age-corrected and thermoregulated perfusion for the child model. The results showed that the maximum temperature estimated in the child's head was 38.38 °C for the NoNet, 38.43 °C for the NeoNet, and 43.05 °C for the CuNet. In the case of NeoNet, the maximum temperature estimated in the child's head remained compliant with IEC 60601 for the MRI RF safety limit. However, the case of CuNet estimated to exceed the RF safety limit, which may require an appropriate cooling period or a hardware design to suppress the RF-induced heating.

15.
Magn Reson Med ; 83(1): 254-261, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429990

RESUMO

PURPOSE: To investigate the heating induced by (pseudo)-continuous arterial spin labeling ((p)CASL) sequences in vivo at 9.4T and to evaluate the benefit of a dedicated labeling coil. METHODS: Temperature was measured continuously in the brain, neck, and rectum of 9 rats with fiber-optic temperature probes while running pCASL-EPI and CASL-EPI sequences, with labeling B1 amplitudes (B1ave ) of 3, 5, and 7 µT and using a dedicated labeling RF coil or a volume coil. From the temperature time courses, the corresponding specific absorption rate (SAR) was computed. A trade-off between SAR and labeling quality was determined based on measured inversion efficiencies. RESULTS: ASL experiments with standard parameters (B1ave = 5 µT, Tacq = 4 min, labeling with volume coil) lead to a brain temperature increase due to RF of 0.72 ± 0.46 K for pCASL and 0.25 ± 0.17 K for CASL. Using a dedicated labeling coil reduced the RF-induced SAR by a factor of 10 in the brain and a factor of 2 in the neck. Besides SAR due to RF, heat from the coil decoupling circuits produced significant temperature increases. When labeling with a dedicated coil, this mechanism was the dominant source of brain heating. At equivalent RF-SAR, CASL provided slightly superior label efficiency to pCASL and is therefore the preferred sequence when an ASL coil is available. CONCLUSION: B1ave = 4-5 µT provided a good compromise between label efficiency and SAR, both for pCASL and CASL. The sensitivity of animals to heating should be taken into account when optimizing preclinical ASL protocols and may require reducing scan duration or lowering B1ave .


Assuntos
Encéfalo/diagnóstico por imagem , Angiografia por Ressonância Magnética , Pescoço/diagnóstico por imagem , Reto/diagnóstico por imagem , Marcadores de Spin , Animais , Tecnologia de Fibra Óptica , Temperatura Alta , Campos Magnéticos , Masculino , Fibras Ópticas , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
16.
Environ Res ; 184: 109227, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32199316

RESUMO

To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.


Assuntos
Telefone Celular , Desenvolvimento Embrionário , Exposição à Radiação , Adolescente , Animais , Linhagem Celular , Criança , Pré-Escolar , Campos Eletromagnéticos , Desenvolvimento Embrionário/efeitos da radiação , Humanos , Masculino , Camundongos , Coelhos , Exposição à Radiação/efeitos adversos , Ondas de Rádio/efeitos adversos , Ratos , Suínos
17.
Sensors (Basel) ; 20(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456139

RESUMO

We report on the development of a method for measuring the permittivity and conductivity of fluids inside a sealed tank (or a pipe) by using an embedded coaxial probe. Permittivity and conductivity in the frequency range 600 MHz to 6 GHz are determined from measurements of a complex reflection coefficient by using a vector network analyser (VNA) that is connected to the embedded probe via a coaxial cable. Substitution methods for calibration of an inaccessible probe are studied in this paper. These require the VNA with attached cable to be calibrated prior to connecting the cable to the embedded coaxial probe. Measurement of permittivity and conductivity of fluids inside sealed tanks and pipes is needed for monitoring industrial processes, such as fermentation. The authors' requirement, however, was to allow monitoring of a tissue-equivalent liquid that is contained inside a sealed tank. This tank is a component of a commercial system for rapid, multiple-band measurement of the specific absorption rate (SAR) of mobile phone handsets. Monitoring of permittivity and conductivity is needed to ensure compliance with international standards for SAR measurement. The paper also presents data for a new broadband (600 MHz to 6 GHz) tissue-equivalent liquid that is based on an oil-in-water emulsion. It is demonstrated that over an extended period of time, the liquid is stable, and an embedded coaxial probe enables its properties to be monitored with the required accuracy.

18.
Neuroimage ; 184: 566-576, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243973

RESUMO

Access to MRI is limited for patients with deep brain stimulation (DBS) implants due to safety hazards, including radiofrequency (RF) heating of tissue surrounding the leads. Computational models provide an exquisite tool to explore the multi-variate problem of RF heating and help better understand the interaction of electromagnetic fields and biological tissues. This paper presents a computational approach to assess RF-induced heating, in terms of specific absorption rate (SAR) in the tissue, around the tip of bilateral DBS leads during MRI at 64MHz/1.5 T and 127 MHz/3T. Patient-specific realistic lead models were constructed from post-operative CT images of nine patients operated for sub-thalamic nucleus DBS. Finite element method was applied to calculate the SAR at the tip of left and right DBS contact electrodes. Both transmit head coils and transmit body coils were analyzed. We found a substantial difference between the SAR and temperature rise at the tip of right and left DBS leads, with the lead contralateral to the implanted pulse generator (IPG) exhibiting up to 7 times higher SAR in simulations, and up to 10 times higher temperature rise during measurements. The orientation of incident electric field with respect to lead trajectories was explored and a metric to predict local SAR amplification was introduced. Modification of the lead trajectory was shown to substantially reduce the heating in phantom experiments using both conductive wires and commercially available DBS leads. Finally, the surgical feasibility of implementing the modified trajectories was demonstrated in a patient operated for bilateral DBS.


Assuntos
Estimulação Encefálica Profunda , Eletrodos Implantados , Temperatura Alta , Imageamento por Ressonância Magnética/efeitos adversos , Modelos Teóricos , Simulação por Computador , Estimulação Encefálica Profunda/instrumentação , Campos Eletromagnéticos , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio
19.
Neuroimage ; 199: 18-29, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096058

RESUMO

Patients with deep brain stimulation devices highly benefit from postoperative MRI exams, however MRI is not readily accessible to these patients due to safety risks associated with RF heating of the implants. Recently we introduced a patient-adjustable reconfigurable coil technology that substantially reduced local SAR at tips of single isolated DBS leads during MRI at 1.5 T in 9 realistic patient models. This contribution extends our work to higher fields by demonstrating the feasibility of scaling the technology to 3T and assessing its performance in patients with bilateral leads as well as fully implanted systems. We developed patient-derived models of bilateral DBS leads and fully implanted DBS systems from postoperative CT images of 13 patients and performed finite element simulations to calculate SAR amplification at electrode contacts during MRI with a reconfigurable rotating coil at 3T. Compared to a conventional quadrature body coil, the reconfigurable coil system reduced the SAR on average by 83% for unilateral leads and by 59% for bilateral leads. A simple surgical modification in trajectory of implanted leads was demonstrated to increase the SAR reduction efficiency of the rotating coil to >90% in a patient with a fully implanted bilateral DBS system. Thermal analysis of temperature-rise around electrode contacts during typical brain exams showed a 15-fold heating reduction using the rotating coil, generating <1°C temperature rise during ∼4-min imaging with high-SAR sequences where a conventional CP coil generated >10°C temperature rise in the tissue for the same flip angle.


Assuntos
Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Estimulação Encefálica Profunda/normas , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/normas , Medicina de Precisão
20.
Int J Hyperthermia ; 36(1): 687-701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31340687

RESUMO

Background: Magnetic nanoparticles (MNPs) generate heat when exposed to an alternating magnetic field. Consequently, MNPs are used for magnetic fluid hyperthermia (MFH) for cancer treatment, and have been shown to increase the efficacy of chemotherapy and/or radiation treatment in clinical trials. A downfall of current MFH treatment is the inability to deliver sufficient heat to the tumor due to: insufficient amounts of MNPs, unequal distribution of MNPs throughout the tumor, or heat loss to the surrounding environment. Objective: In this study, the objective was to identify MNPs with high heating efficiencies quantified by their specific absorption rate (SAR). Methods: A panel of 31 commercially available MNPs were evaluated for SAR in two different AMFs. Additionally, particle properties including iron content, hydrodynamic diameter, core diameter, magnetic diameter, magnetically dead layer thickness, and saturation mass magnetization were investigated. Results: High SAR MNPs were identified. For SAR calculations, the initial slope, corrected slope, and Box-Lucas methods were used and validated using a graphical residual analysis, and the Box-Lucas method was shown to be the most accurate. Other particle properties were identified and examined for correlations with SAR values. Positive correlations of particle properties with SAR were found, including a strong correlation for the magnetically dead layer thickness. Conclusions: This work identified high SAR MNPs for hyperthermia, and provides insight into properties which correlate with SAR which will be valuable for synthesis of next-generation MNPs. SAR calculation methods must be standardized, and this work provides an in-depth analysis of common calculation methods.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Campos Magnéticos , Fenômenos Magnéticos , Nanopartículas de Magnetita/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA