Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant Cell Environ ; 47(7): 2526-2541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515431

RESUMO

A holistic understanding of plant strategies to acquire soil resources is pivotal in achieving sustainable food security. However, we lack knowledge about variety-specific root and rhizosphere traits for resource acquisition, their plasticity and adaptation to drought. We conducted a greenhouse experiment to phenotype root and rhizosphere traits (mean root diameter [Root D], specific root length [SRL], root tissue density, root nitrogen content, specific rhizosheath mass [SRM], arbuscular mycorrhizal fungi [AMF] colonization) of 16 landraces and 22 modern cultivars of temperate maize (Zea mays L.). Our results demonstrate that landraces and modern cultivars diverge in their root and rhizosphere traits. Although landraces follow a 'do-it-yourself' strategy with high SRLs, modern cultivars exhibit an 'outsourcing' strategy with increased mean Root Ds and a tendency towards increased root colonization by AMF. We further identified that SRM indicates an 'outsourcing' strategy. Additionally, landraces were more drought-responsive compared to modern cultivars based on multitrait response indices. We suggest that breeding leads to distinct resource acquisition strategies between temperate maize varieties. Future breeding efforts should increasingly target root and rhizosphere economics, with SRM serving as a valuable proxy for identifying varieties employing an outsourcing resource acquisition strategy.


Assuntos
Adaptação Fisiológica , Secas , Micorrizas , Raízes de Plantas , Rizosfera , Solo , Zea mays , Zea mays/fisiologia , Zea mays/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Solo/química , Micorrizas/fisiologia , Fenótipo , Nitrogênio/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799444

RESUMO

Construction economics of plant roots exhibit predictable relationships with root growth, death, and nutrient uptake strategies. Plant taxa with inexpensively constructed roots tend to more precisely explore nutrient hotspots than do those with costly constructed roots but at the price of more frequent tissue turnover. This trade-off underlies an acquisitive to conservative continuum in resource investment, described as the "root economics spectrum (RES)." Yet the adaptive role and genetic basis of RES remain largely unclear. Different ecotypes of switchgrass (Panicum virgatum) display root features exemplifying the RES, with costly constructed roots in southern lowland and inexpensively constructed roots in northern upland ecotypes. We used an outbred genetic mapping population derived from lowland and upland switchgrass ecotypes to examine the genetic architecture of the RES. We found that absorptive roots (distal first and second orders) were often "deciduous" in winter. The percentage of overwintering absorptive roots was decreased by northern upland alleles compared with southern lowland alleles, suggesting a locally-adapted conservative strategy in warmer and acquisitive strategy in colder regions. Relative turnover of absorptive roots was genetically negatively correlated with their biomass investment per unit root length, suggesting that the key trade-off in framing RES is genetically facilitated. We also detected strong genetic correlations among root morphology, root productivity, and shoot size. Overall, our results reveal the genetic architecture of multiple traits that likely impacts the evolution of RES and plant aboveground-belowground organization. In practice, we provide genetic evidence that increasing switchgrass yield for bioenergy does not directly conflict with enhancing its root-derived carbon sequestration.


Assuntos
Genética Populacional , Poaceae/genética , Poaceae/metabolismo , Adaptação Fisiológica/genética , Alelos , Ecótipo , Panicum/genética , Fenótipo , Raízes de Plantas/metabolismo
3.
J Exp Bot ; 74(6): 2127-2145, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36640126

RESUMO

Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.


Assuntos
Carbono , Pradaria , Poaceae , Secas , Biomassa , Amido , Ecossistema
4.
Mycorrhiza ; 33(5-6): 359-368, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821597

RESUMO

Strong effects of plant identity, soil nutrient availability or mycorrhizal fungi on root traits have been well documented, but their interactive influences on root traits are still poorly understood. Here, three crop species (maize, wheat and soybean) were grown under four phosphorus (P) addition levels (0, 20, 40 and 60 mg P kg-1 dry soil), and plants were inoculated with or without five combined arbuscular mycorrhizal fungal (AMF) species. Plant biomass, nutrient contents, root traits (including total root length, average root diameter, specific root length and root tissue density) and plants' mycorrhizal responses were measured. Crop species, P level, AMF, and their interactions strongly affected plant biomass and root traits. P fertilization promoted plant growth but reduced mycorrhizal benefits on plant biomass and nutrient uptake. Root traits of maize were sensitive to P addition only under the non-mycorrhizal condition, whilst most root traits of soybean and wheat plants were responsive to mycorrhizal inoculation but not P addition. Mycorrhizal colonization reduced the root plasticity in response to P fertility for maize but not for wheat or soybean. This study highlights the importance of soil nutrient fertility and mycorrhizal symbiosis in influencing root traits.


Assuntos
Micorrizas , Micorrizas/fisiologia , Solo , Glycine max , Triticum , Zea mays , Fósforo , Raízes de Plantas/microbiologia
5.
J Sci Food Agric ; 102(2): 540-549, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34146349

RESUMO

BACKGROUND: Pasture farming in south-western Australia is challenged by nutrient-poor soils. We assessed the impact of microbial consortium inoculant (MI) and rock mineral fertiliser (MF) on growth, nutrient uptake, root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation in three pasture grasses - tall fescue (Festuca arundinacea L.), veldt grass (Ehrharta calycina Sm.) and tall wheatgrass (Thinopyrum ponticum L.) grown in low-phosphorus (P) sandy soil in a glasshouse for 30 and 60 days after sowing (DAS). RESULTS: Veldt grass produced the highest specific root length and smallest average root diameter in both growth periods, and had similar shoot weight, root surface area and fine root length (except at 30 DAS) to tall fescue. Compared with the control, MI alone or combined with MF significantly increased shoot and root biomass (except root biomass at 30 DAS), likely due to the significant increases in root surface area and fine root length. Plants supplied with MI + MF had higher shoot N and P contents than those in the MI and the control treatments at 60 DAS. Malate, citrate and trans-aconitate were the major rhizosphere carboxylates exuded at both 30 and 60 DAS. Malate exudation varied among species and treatments in both growth periods, but citrate exudation was consistently higher in the low-P treatments (control and MI) than the MF and MI + MF treatments. CONCLUSION: Microbial consortium inoculant can positively influence pasture production in low-P soil by increasing root surface area and fine root length, whereas exudation of nutrient-mobilising carboxylates (citrate) is dependent more on soil P supply than microbial consortium inoculant. © 2021 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fósforo/análise , Exsudatos de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/microbiologia , Ácidos Carboxílicos/análise , Ácidos Carboxílicos/metabolismo , Fertilizantes/análise , Consórcios Microbianos , Fósforo/metabolismo , Exsudatos de Plantas/análise , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poaceae/química , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Rizosfera , Solo/química
6.
Plant Cell Environ ; 44(4): 1257-1267, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33386607

RESUMO

Nutrient-poor ecosystems globally exhibit high plant diversity. One mechanism enabling the co-existence of species in such ecosystems is facilitation among plants with contrasting nutrient-acquisition strategies. The ecophysiological processes underlying these interactions remain poorly understood. We hypothesized that root positioning plays a role between sympatric species in nutrient-poor vegetation. We investigated how the growth traits of the focal mycorrhizal non-cluster-rooted Hibbertia racemosa change when grown in proximity of non-mycorrhizal Banksia attenuata, which produces cluster roots that increase nutrient availability, compared with growth with conspecifics. Focal plants were placed in the centre of rhizoboxes, and biomass allocation, root system architecture, specific root length (SRL), and leaf nutrient concentration were assessed. When grown with B. attenuata, focal plants decreased root investment, increased root growth towards B. attenuata, and positioned their roots near B. attenuata cluster roots. SRL was greater, and the degree of localized root investment correlated positively with B. attenuata cluster-root biomass. Total nutrient contents in the focal individuals were greater when grown with B. attenuata. Focal plants directed their root growth towards the putatively facilitating neighbour's cluster roots, modifying root traits and investment. Preferential root positioning and root morphological traits play important roles in positive plant-plant interactions.


Assuntos
Dilleniaceae/fisiologia , Nutrientes/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Comunicação , Dilleniaceae/crescimento & desenvolvimento , Dilleniaceae/metabolismo , Ecossistema , Micorrizas , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Proteaceae/crescimento & desenvolvimento , Proteaceae/metabolismo , Proteaceae/fisiologia
7.
Ann Bot ; 127(4): 473-481, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32966560

RESUMO

BACKGROUND AND AIMS: Lessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory? METHODS: We sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species. KEY RESULTS: Root traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory. CONCLUSIONS: One of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.


Assuntos
Ecologia , Plantas , Folhas de Planta , Solo , Austrália do Sul
8.
Am J Bot ; 108(5): 744-755, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34028799

RESUMO

PREMISE: Studying the organization of functional traits in plant leaves and stems has revealed notable patterns linking function and form; however, evidence of similarly robust organization in root tissues remains controversial. We posit that anatomical traits in roots can provide insight on the overall organization of the root system. We hypothesized that size variation in the tissue outside the stele is related in a nonlinear fashion with functional traits associated with direct resource uptake, including a negative relationship with root architectural traits, and that similar relationships detected in tropical areas also hold true in other biomes. METHODS: We addressed our hypotheses using empirical data from 24 tropical tree species in French Guiana, including anatomical measurements in first order roots and functional trait description for the entire fine root system. In addition, we compiled a global meta-analysis of root traits for 500+ forest species across tropical, subtropical, and temperate forests. RESULTS: Our results supported the expected nonlinear relationships between cortical size and morphological traits and a negative linear trend with architectural traits. We confirmed a global negative relationship among specific root length (SRL), diameter, and tissue density, suggesting similar anatomical constraints in root systems across woody plants. However, the importance of factors varies across biomes, possibly related to the unequal phylogenetic representation across latitudes. CONCLUSIONS: Our findings imply that the rhizocentric hypothesis can be a valuable approach to understand fine root trait syndromes and the evolution of absorptive roots in vascular plants.


Assuntos
Florestas , Raízes de Plantas , Fenótipo , Filogenia , Síndrome
9.
Oecologia ; 195(2): 469-478, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33538880

RESUMO

To understand impacts of post-disturbance assembly mechanisms on the functional diversity (FD) of plant communities, it is necessary to determine how the environment drives their functional trait composition. In the boreal forest, post-fire abiotic filters may control community assembly by selecting plants with specific traits. Ericaceous heaths are characterized by low FD and are thought to be subject to such filters. We hypothesized that soil parameters select for a specific suite of traits and act as a secondary abiotic filter in post-fire ericaceous heath and contribute to the observed reduction of FD. We measured six soil parameters, five functional traits, and plant species abundances in eight post-fire heath and four regenerating forest sites in Eastern Canada. We conducted a combined analysis of RLQ (R-table Linked to Q-table) and fourth-corner methods to examine the links between plant traits and plot-level soil parameters, mediated by species abundances. Only below ground traits were significantly linked to soil variables. Specific root length and ericoid mycorrhizal associations were negatively linked to total soil nitrogen, available ammonium, and pH. Post-fire heath soils favour a specific suite of species traits. Only a portion of the regional species pool possesses the above-mentioned traits, and when they are favoured by habitat conditions, they assemble into a community with low FD. The novelty of our study is here we show how the relationship between traits and soil chemistry can act as a secondary filter and exert community-level trait changes responsible for the low functional diversity observed in heaths.


Assuntos
Incêndios , Solo , Canadá , Ecossistema , Florestas , Microbiologia do Solo
10.
New Phytol ; 227(1): 156-167, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31834943

RESUMO

Plant biomass allocation may be optimized to acquire and conserve resources. How trade-offs in the allocation of tropical tree seedlings depend on different stressors remains poorly understood. Here we test whether above- and below-ground traits of tropical tree seedlings could explain observed occurrence along gradients of resources (light, water) and defoliation (fire, herbivory). We grew 24 tree species occurring in five African vegetation types, varying from dry savanna to moist forest, in a glasshouse for 6 months, and measured traits associated with biomass allocation. Classification based on above-ground traits resulted in clusters representing savanna and forest species, with low and high shoot investment, respectively. Classification based on root traits resulted in four clusters representing dry savanna, humid savanna, dry forest and moist forest, characterized by a deep mean rooting depth, root starch investment, high specific root length in deeper soil layers, and high specific root length in the top soil layer, respectively. In conclusion, tree seedlings in this study show root trait syndromes, which vary along gradients of resources and defoliation: seedlings from dry areas invest in deep roots, seedlings from shaded environments optimize shoot investment, and seedlings experiencing frequent defoliation store resources in the roots.


Assuntos
Plântula , Árvores , Biomassa , Florestas , Raízes de Plantas , Clima Tropical
11.
New Phytol ; 226(2): 583-594, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31868933

RESUMO

Root exudation is a key plant function with a large influence on soil organic matter dynamics and plant-soil feedbacks in forest ecosystems. Yet despite its importance, the main ecological drivers of root exudation in mature forest trees remain to be identified. During two growing seasons, we analyzed the dependence of in situ collected root exudates on root morphology, soil chemistry and nutrient availability in six mature European beech (Fagus sylvatica L.) forests on a broad range of bedrock types. Root morphology was a major driver of root exudation across the nutrient availability gradient. A doubling of specific root length exponentially increased exudation rates of mature trees by c. 5-fold. Root exudation was also closely negatively related to soil pH and nitrogen (N) availability. At acidic and N-poor sites, where fungal biomass was reduced, exudation rates were c. 3-fold higher than at N- and base-richer sites and correlated negatively with the activity of enzymes degrading less bioavailable carbon (C) and N in the bulk soil. We conclude that root exudation increases on highly acidic, N-poor soils, in which fungal activity is reduced and a greater portion of the assimilated plant C is shifted to the external ecosystem C cycle.


Assuntos
Fagus , Ecossistema , Florestas , Nutrientes , Raízes de Plantas , Solo , Árvores
12.
Am J Bot ; 107(4): 628-638, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32236958

RESUMO

PREMISE: Determining which traits characterize strategies of coexisting species is important to developing trait-based models of plant communities. First, global dimensions may not exist locally. Second, the degree to which traits and trait spectra constitute independent dimensions of functional variation at various scales continues to be refined. Finally, traits may be associated with existing categorical groupings. METHODS: We assessed trait integration and differentiation across 57 forest understory plant species in Douglas-fir forests of western Oregon, United States. We combined measurements for a range of traits with literature-based estimates of seed mass and species groupings. We used network analysis and nonmetric multidimensional scaling ordination (NMS) to determine the degree of integration. RESULTS: We observed a strong leaf economics spectrum (LES) integrated with stem but not root traits. However, stem traits and intrinsic water-use efficiency integrated LES and root traits. Network analyses indicated a modest grouping of a priori trait dimensions. NMS indicated that multivariate differences among species were related primarily to (1) rooting depth and plant height vs. specific root length, (2) the LES, and (3) leaf size vs. seed mass. These differences were related to species groupings associated with growth and life form, leaf lifespan and seed dispersal mechanisms. CONCLUSIONS: The strategies of coexisting understory plant species could not be reduced to a single dimension. Yet, species can be characterized efficiently and effectively for trait-based studies of plant communities by measuring four common traits: plant height, specific leaf area, leaf size, and seed mass.


Assuntos
Florestas , Plantas , Oregon , Fenótipo , Folhas de Planta
13.
Ecology ; 100(3): e02588, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30580447

RESUMO

Despite the importance of fine roots for the acquisition of soil resources such as nitrogen and water, the study of linkages between traits and both population and community dynamics remains focused on aboveground traits. We address this gap by investigating associations between belowground traits and metrics of species dynamics. Our analysis included 85 species from a long-term data set on the transition from old field to forest in eastern North America (the Buell-Small Succession Study) and the new Fine-Root Ecology Database. Given the prominent roles of life form (woody vs. non-woody) and species origin (native vs. exotic) in defining functional relationships, we also assessed whether traits or their relationships with species dynamics differed for these groups. Species that reached their peak abundance early in succession had fine-root traits corresponding to resource acquisitive strategies (i.e., they were thinner, less dense, and had higher nitrogen concentrations) while species that peaked progressively later had increasingly conservative strategies. In addition to having more acquisitive root traits than native species, exotics diverged from the above successional trend, having consistently thinner fine roots regardless of the community context. Species with more acquisitive fine-root morphologies typically had faster rates of abundance increase and achieved their maximal rates in fewer years. Decreasing soil nutrient availability and increasing belowground competition may become increasingly strong filters in successional communities, acting on root traits to promote a transition from acquisitive to conservative foraging. However, disturbances that increase light and soil resource availability at local scales may allow acquisitive species, especially invasive exotics, to continue colonizing late into the community transition to forest.


Assuntos
Florestas , Árvores , Nitrogênio , Raízes de Plantas , Plantas , Solo
14.
Ecol Lett ; 21(3): 411-421, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359502

RESUMO

Correlations between community-weighted mean (CWM) traits and environmental gradients are often assumed to quantify the adaptive value of traits. We tested this assumption by comparing these correlations with models of survival probability using 46 perennial species from long-term permanent plots in pine forests of Arizona. Survival was modelled as a function of trait × environment interactions, plant size, climatic variation and neighbourhood competition. The effect of traits on survival depended on the environmental conditions, but the two statistical approaches were inconsistent. For example, CWM-specific leaf area (SLA) and soil fertility were uncorrelated. However, survival was highest for species with low SLA in infertile soil, a result which agreed with expectations derived from the physiological trade-off underpinning leaf economic theory. CWM trait-environment relationships were unreliable estimates of how traits affected survival, and should only be used in predictive models when there is empirical support for an evolutionary trade-off that affects vital rates.


Assuntos
Florestas , Arizona , Pinus , Folhas de Planta , Solo , Taxa de Sobrevida
15.
New Phytol ; 219(4): 1338-1352, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29856482

RESUMO

Plants respond to resource stress by changing multiple aspects of their biomass allocation, morphology, physiology and architecture. To date, we lack an integrated view of the relative importance of these plastic responses in alleviating resource stress and of the consistency/variability of these responses among species. We subjected nine species (legumes, forbs and graminoids) to nitrogen and/or light shortages and measured 11 above-ground and below-ground trait adjustments critical in the alleviation of these stresses (plus several underlying traits). Nine traits out of 11 showed adjustments that improved plants' potential capacity to acquire the limiting resource at a given time. Above ground, aspects of plasticity in allocation, morphology, physiology and architecture all appeared important in improving light capture, whereas below ground, plasticity in allocation and physiology were most critical to improving nitrogen acquisition. Six traits out of 11 showed substantial heterogeneity in species plasticity, with little structuration of these differences within trait covariation syndromes. Such comprehensive assessment of the complex nature of phenotypic responses of plants to multiple stress factors, and the comparison of plant responses across multiple species, makes a clear case for the high (but largely overlooked) diversity of potential plastic responses of plants, and for the need to explore the potential rules structuring them.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Estresse Fisiológico , Biomassa , Luz , Nitrogênio/farmacologia , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Plantas/efeitos dos fármacos , Plantas/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação
16.
BMC Ecol ; 18(1): 9, 2018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-29454355

RESUMO

BACKGROUND: Mixed forests are believed to enhance ecosystem functioning and sustainability due to complementary resource use, environmental benefits and improved soil properties. The facilitation between different species may induce overyielding. Meanwhile, the species-specific fine root foraging strategies and tradeoffs would determine the structure and dynamics of plant communities. Here the aim was to investigate the admixing effects of fine-root biomass, vertical distribution and morphology in Pinus massoniana-Cinnamomum camphora mixed plantations and corresponding monocultures at 10-, 24- and 45-year old stands. RESULTS: The fine root biomass in the Pinus-Cinnamomum mixed forest exerted a certain degree of overyielding effect. These positive admixing effects, however, did not enhance with forest stand development. The overall relative yield total ranged from 1.83 and 1.51 to 1.33 in 10-, 24- and 45-year-old stand, respectively. The overyielding was mainly attributed to the over-performance of late successional species, Cinnamomum, in mixed stands. The vertical fine root biomass distribution model showed fine roots of pioneer species, Pinus, shifted to the superficial layer when mixed with Cinnamomum. Furthermore, the specific root length (SRL) of Pinus was significantly higher in Pinus-Cinnamomum mixed stands than that in monocultures, and the magnitude of differences increased over time. However, the vertical fine-root distribution and SRL for Cinnamomum did not show significant differences between monoculture and mixtures. CONCLUSIONS: Our results indicated that the magnitude of fine root overyielding in mixed forests showed a high degree of consistency with the total amount of fine root biomass itself, suggesting the overyielding effects in mixed forests were correlated with the degree of belowground interaction and competition degree involved. The late successional species, Cinnamomum, invested more carbon to belowground by increasing the fine root biomass in mixtures. While the pioneer species, Pinus, adapted to the presence of the species Cinnamomum by modification of vertical distribution and root morphological plasticity in the mixtures. These species-specific fine root foraging strategies might imply the differences of forest growth strategies of co-occurring species and contribute to the success and failure of particular species during the succession over time.


Assuntos
Cinnamomum camphora/fisiologia , Pinus/fisiologia , Raízes de Plantas/fisiologia , Biomassa , China , Cinnamomum camphora/anatomia & histologia , Agricultura Florestal/métodos , Pinus/anatomia & histologia , Raízes de Plantas/anatomia & histologia
17.
New Phytol ; 215(4): 1562-1573, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28440574

RESUMO

Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales.


Assuntos
Micorrizas/fisiologia , Filogenia , Desenvolvimento Vegetal , Plantas/microbiologia , Característica Quantitativa Herdável , Nitrogênio/metabolismo , Folhas de Planta/fisiologia
18.
New Phytol ; 216(4): 1130-1139, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28895147

RESUMO

Root traits are often thought to be analogues of leaf traits along the plant economics spectrum. But evolutionary pressures have most likely shaped above- and belowground patterns differentially. Here, we aimed to identify the most important aboveground traits for explaining root traits without an a priori focus on known concepts. We measured morphological root traits in a glasshouse experiment on 141 common Central European grassland species. Using random forest algorithms, we built predictive models of six root traits from 97 aboveground morphological, ecological and life history traits. Root tissue density was best predicted by leaf dry matter content, whereas traits related to root fineness were best predicted by diaspore mass: the heavier the diaspore, the coarser the root system. Specific leaf area (SLA) was not an important predictor for any of the root traits. This study confirms the hypothesis that root traits are more than analogues of leaf traits within a plant economics spectrum. The results reveal a novel ecological pattern and highlight the power of root data to close important knowledge gaps in trait-based ecology.


Assuntos
Raízes de Plantas/anatomia & histologia , Brotos de Planta/anatomia & histologia , Poaceae/anatomia & histologia , Evolução Biológica , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Poaceae/fisiologia
19.
New Phytol ; 210(3): 827-38, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26765506

RESUMO

Root trait variation and plasticity could be key factors differentiating plant performance under drought. However, water manipulation and root measurements are rarely coupled empirically across growth forms to identify whether belowground strategies are generalizable across species. We measured seedling root traits across three moisture levels in 18 Mediterranean forbs, grasses, and woody species. Drought increased the root mass fraction (RMF) and decreased the relative proportion of thin roots (indicated by increased root diameters and decreased specific root length (SRL)), rates of root elongation and growth, plant nitrogen uptake, and plant growth. Although responses varied across species, plasticity was not associated with growth form. Woody species differed from forbs and grasses in many traits, but herbaceous groups were similar. Across water treatments, trait correlations suggested a single spectrum of belowground trade-offs related to resource acquisition and plant growth. While effects of SRL and RMF on plant growth shifted with drought, root elongation rate consistently represented this spectrum. We demonstrate that general patterns of root morphology and plasticity are identifiable across diverse species. Root trait measurements should enhance our understanding of belowground strategy and performance across growth forms, but it will be critical to incorporate plasticity and additional aspects of root function into these efforts.


Assuntos
Umidade , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Característica Quantitativa Herdável , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Solo , Modelos Lineares , Desenvolvimento Vegetal , Raízes de Plantas/anatomia & histologia , Análise de Componente Principal , Especificidade da Espécie , Água
20.
Oecologia ; 180(4): 1037-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26254258

RESUMO

In Neotropical forests, lianas are increasing in abundance relative to trees. This increased species richness may reflect a positive response to global change factors including increased temperature, atmospheric CO2, habitat fragmentation, and drought severity; however, questions remain as to the specific mechanisms facilitating the response. Previous work suggests that lianas may gain an ecological advantage over trees through leaf functional traits that offer a quick return on investment of resources, although it is unknown whether this pattern extends to root traits and relationships with fungal or bacterial symbionts belowground. We sampled confamilial pairs of liana and tree species and quantified morphological and chemical traits of leaves and fine roots, as well as root symbiont abundance, to determine whether functional traits associated with resource acquisition differed between the two. Compared to trees, lianas possessed higher specific leaf area, specific root length, root branching intensity, and root nitrogen (N) and phosphorus (P) concentrations, and lower leaf and root tissue density, leaf and root carbon (C), root diameter, root C:P and N:P, and mycorrhizal colonization. Our study provides new evidence that liana leaf and root traits are characterized by a rapid resource acquisition strategy relative to trees. These liana functional traits may facilitate their response to global change, raising questions about how increased liana dominance might affect ecosystem processes of Neotropical forests.


Assuntos
Florestas , Nitrogênio/metabolismo , Fenótipo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Plantas/metabolismo , Clima Tropical , Carbono/metabolismo , Meio Ambiente , Micorrizas , Fósforo/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Plantas/anatomia & histologia , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA