Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338372

RESUMO

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Assuntos
Benzamidas , Disfunção Cognitiva , Maleato de Dizocilpina , Compostos Nitrosos , Pirazóis , Piridinas , Sulfonamidas , Camundongos , Animais , Maleato de Dizocilpina/farmacologia , Óxido Nítrico/farmacologia , Escopolamina/farmacologia , Óxido Nítrico Sintase Tipo III , Disfunção Cognitiva/tratamento farmacológico , Encéfalo , Regulação Alostérica
2.
Free Radic Biol Med ; 89: 602-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456055

RESUMO

The effect of NO between cytochromes b and c of the mitochondrial respiratory chain were studied using submitochondrial particles (SMP) from bovine heart and GSNO and SPER-NO as NO sources. Succinate-cytochrome c reductase (complex II-III) activity (222 ± 4 nmol/min. mg protein) was inhibited by 51% in the presence of 500 µM GSNO and by 48% in the presence of 30 µM SPER-NO, in both cases at ~1.25 µM NO. Neither GSNO nor SPER-NO were able to inhibit succinate-Q reductase activity (complex II; 220 ± 9 nmol/min. mg protein), showing that NO affects complex III. Complex II-III activity was decreased (36%) when SMP were incubated with l-arginine and mtNOS cofactors, indicating that this effect is also produced by endogenous NO. GSNO (500 µM) reduced cytochrome b562 by 71%, in an [O2] independent manner. Hyperbolic increases in O2(•-) (up to 1.3 ± 0.1 nmol/min. mg protein) and H2O2 (up to 0.64 ± 0.05 nmol/min. mg protein) productions were observed with a maximal effect at 500 µM GSNO. The O2(•-)/H2O2 ratio was 1.98 in accordance with the stoichiometry of the O2(•-) disproportionation. Moreover, H2O2 production was increased by 72-74% when heart coupled mitochondria were exposed to 500 µM GSNO or 30 µM SPER-NO. SMP incubated in the presence of succinate showed an EPR signal (g=1.99) compatible with a stable semiquinone. This EPR signal was increased not only by antimycin but also by GSNO and SPER-NO. These signals were not modified under N2 atmosphere, indicating that they are not a consequence to the effect of NOx species on complex III area. These results show that NO interacts with ubiquinone-cytochrome b area producing antimycin-like effects. This behaviour comprises the inhibition of electron transfer, the interruption of the oxidation of cytochromes b, and the enhancement of [UQH(•)]ss which, in turn, leads to an increase in O2(•-) and H2O2 mitochondrial production rates.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Óxido Nítrico/metabolismo , Partículas Submitocôndricas/metabolismo , Animais , Antimicina A/análogos & derivados , Antimicina A/metabolismo , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Oxirredução , Ratos
3.
Free Radic Biol Med ; 65: 1521-1532, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23806384

RESUMO

Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO3, 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.


Assuntos
Plaquetas/metabolismo , Nitratos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Compostos de Potássio/farmacologia , Adolescente , Adulto , Beta vulgaris , Doenças Cardiovasculares/tratamento farmacológico , Colágeno/farmacologia , Estudos Cross-Over , GMP Cíclico/biossíntese , Dieta , Suplementos Nutricionais , Epinefrina/farmacologia , Eritrócitos/metabolismo , Feminino , Guanilato Ciclase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Nitratos/administração & dosagem , Óxido Nítrico/metabolismo , Selectina-P/biossíntese , Inibidores da Agregação Plaquetária/administração & dosagem , Compostos de Potássio/administração & dosagem , Fatores Sexuais , Verduras , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA