Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2208461119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858432

RESUMO

Insects frequently harbor endosymbionts, which are bacteria housed within host tissues. These associations are stably maintained over evolutionary timescales through vertical transmission of endosymbionts from host mothers to their offspring. Some endosymbionts manipulate host reproduction to facilitate spread within natural populations. Consequently, such infections have major impacts on insect physiology and evolution. However, technical hurdles have limited our understanding of the molecular mechanisms underlying such insect-endosymbiont interactions. Here, we investigate the nutritional interactions between endosymbiotic partners using the tractable insect Drosophila melanogaster and its natural endosymbiont Spiroplasma poulsonii. Using a combination of functional assays, metabolomics, and proteomics, we show that the abundance and amino acid composition of a single Spiroplasma membrane lectin, Spiralin B (SpiB), dictates the amino acid requirements of the endosymbiont and determines its proliferation within host tissues. Ectopically increasing SpiB levels in host tissues disrupts localization of endosymbionts in the fly egg chambers and decreases vertical transmission. We find that SpiB is likely to be required by the endosymbiont to enter host oocytes, which may explain the massive investment of S. poulsonii in SpiB synthesis. SpiB both permits vertical transmission of the symbiont and limits its growth in nutrient-limiting conditions for the host; therefore, a single protein plays a pivotal role in ensuring durability of the interaction in a variable environment.


Assuntos
Proteínas da Membrana Bacteriana Externa , Drosophila melanogaster , Interações entre Hospedeiro e Microrganismos , Spiroplasma , Simbiose , Aminoácidos/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Spiroplasma/metabolismo
2.
Emerg Infect Dis ; 30(1): 187-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147505

RESUMO

We report a case of Spiroplasma bloodstream infection in a patient in China who developed pulmonary infection, acute respiratory distress syndrome, sepsis, and septic shock after emergency surgery for type A aortic dissection. One organism closely related to Spiroplasma eriocheiris was isolated from blood culture and identified by whole-genome sequencing.


Assuntos
Sepse , Spiroplasma , Humanos , Spiroplasma/genética , China/epidemiologia , Sepse/diagnóstico , Sepse/etiologia
3.
BMC Microbiol ; 24(1): 373, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342132

RESUMO

BACKGROUND: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. RESULTS: A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present. CONCLUSION: This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.


Assuntos
Enterobacteriaceae , Spiroplasma , Simbiose , Trypanosoma , Moscas Tsé-Tsé , Wolbachia , Animais , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Spiroplasma/isolamento & purificação , Spiroplasma/fisiologia , Spiroplasma/genética , Wolbachia/isolamento & purificação , Wolbachia/genética , Burkina Faso , Trypanosoma/isolamento & purificação , Trypanosoma/genética , Trypanosoma/fisiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Masculino , Feminino
4.
Microb Pathog ; 196: 106928, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270754

RESUMO

In recent years, the red swamp crayfish (Procambarus clarkii, P. clarkii) farming industry has suffered huge economic losses due to the pathogenic bacterium Spiroplasma eriocheiris (S. eriocheiris). To elucidate the immune response mechanism and identify hub immune genes as well as their associated microRNAs that regulate the host response of P. clarkii against S. eriocheiris infection, we conducted a comprehensive analysis on P. clarkii hemocyte mRNA and microRNA (miRNA) transcriptomes at different infection stages using third- and second-generation sequencing technologies. In full-length transcriptome functional annotation, 8155 unigenes were annotated, and 1168 potential new transcripts were predicted. In the mRNA transcriptome, a total of 3168 differentially expressed genes were identified at different infection stages, including 1492 upregulated and 1676 downregulated genes (duplicate genes excluded). Transcriptome analysis revealed 880 differentially expressed genes involved in multiple pathways and processes such as endocytosis, autophagy, lysosome, mTOR signaling, phagosome, and the Fanconi anemia pathway. Mfuzz analysis was employed to integrate and cluster the differential expression trends of genes across the three infection stages. In the miRNA transcriptome, 234 miRNAs and 966 predicted target genes were identified, with 86 differentially expressed miRNAs identified across the three time periods. A significant difference (P < 0.05) was observed for miRNAs including pcl-miR-146-3p, pcl-miR-74-3p, pcl-miR-225-5p, and pcl-miR-68-5p. These miRNAs are involved in multiple immune and autophagy-related pathways and have regulatory effects on immune genes including Vps26, lqf, and ERK-A. Based on the differentially expressed immune-related genes, we constructed a protein-protein interaction (PPI) network, which revealed the interactions among hub genes including Rac1, Akt1, Rho1, and Egfr. We also constructed a miRNA-gene interaction network in immune and autophagy-related processes, highlighting the potential regulatory effects of miRNAs including pcl-miR-183-5p, pcl-miR-146-3p, pcl-miR-176-5p, and pcl-miR-225-5p on proteins including LST8, SNAP29, Rab-7A, and ERK-A. To conclude, this study has identified hub immune genes and corresponding regulatory miRNAs in P. clarkii hemocytes in response to S. eriocheiris infection and explored the roles of these genes in selected pathways and processes. These findings are expected to provide further insights into the molecular mechanisms that confer resistance to S. eriocheiris infection in P. clarkii.

5.
Fish Shellfish Immunol ; 154: 109879, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244074

RESUMO

Spiroplasma eriocheiris is a kind of intracellular pathogen without cell wall and the causative agent of Chinese mitten crab Eriocheir sinensis "tremor disease", which causes significant economic losses in the crustacean aquaculture. However, little is known about the intracellular transport of this pathogen and host innate immune response to this pathogen. Rab GTPases are key regulators for endocytosis and intracellular pathogen trafficking. In this study, we showed that S. eriocheiris infection upregulated the transcription of Rab7 through the downregulation of miR-131-3p. Subsequently, both hemocytes transfected with miR-131-3p mimics and hemocytes derived from Rab7 knockdown crabs exhibited reduced phagocytic activities and increased susceptibility to S. eriocheiris infection. Additionally, Rab7 could interact with the cell shape-determining protein MreB3 of S. eriocheiris, and its overexpression promoted S. eriocheiris internalization and fusion with lysosomes, thereby limiting S. eriocheiris replication in Drosophila S2 cells. Overall, these results demonstrated that Rab7 facilitated host cell phagocytosis and interacted with MreB3 of S. eriocheiris to prevent S. eriocheiris infection. Moreover, miR-131-3p was identified as a negative regulator of this process through its targeting of Rab7. Therefore, targeting miR-131-3p might be an effective strategy for controlling S. eriocheiris in crab aquaculture.

6.
BMC Ophthalmol ; 24(1): 217, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773506

RESUMO

BACKGROUND: Only seven cases of ocular Spiroplasma infection have been reported to date, all presenting as congenital cataracts with concomitant intraocular inflammation. We describe the first case of Spiroplasma infection initially presenting as a corneal infiltrate. CASE PRESENTATION: A 1-month-old girl was referred for a corneal infiltrate in the left eye. She presented in our hospital with unilateral keratouveitis. Examination showed a stromal corneal infiltrate and dense white keratic precipitates in the left eye. Herpetic keratouveitis was suspected and intravenous acyclovir therapy was initiated. Two weeks later, the inflammation in the left eye persisted and was also noticed in the right eye. Acute angle-closure glaucoma and a cataract with dilated iris vessels extending onto the anterior lens capsule developed in the left eye. The inflammation resolved after treatment with azithromycin. Iridectomy, synechiolysis and lensectomy were performed. Bacterial metagenomic sequencing (16 S rRNA) and transmission electron microscopy revealed Spiroplasma ixodetis species in lens aspirates and biopsy. Consequently, a diagnosis of bilateral Spiroplasma uveitis was made. CONCLUSIONS: In cases of congenital cataract with concomitant intraocular inflammation, Spiroplasma infection should be considered. The purpose of this case report is to raise awareness of congenital Spiroplasma infection as a cause of severe keratouveitis, cataract and angle-closure glaucoma in newborns. Performing molecular testing on lens aspirates is essential to confirm diagnosis. Systemic macrolides are suggested as the mainstay of treatment.


Assuntos
Catarata , Infecções Oculares Bacterianas , Spiroplasma , Uveíte , Humanos , Feminino , Infecções Oculares Bacterianas/diagnóstico , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/complicações , Catarata/congênito , Catarata/diagnóstico , Catarata/complicações , Uveíte/diagnóstico , Uveíte/microbiologia , Uveíte/complicações , Spiroplasma/isolamento & purificação , Ceratite/diagnóstico , Ceratite/microbiologia , Recém-Nascido , Antibacterianos/uso terapêutico , Lactente
7.
J Clin Microbiol ; 61(2): e0149822, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36688643

RESUMO

Testing of cellular therapy products for Mycoplasma is a regulatory requirement by the United States Food and Drug Administration (FDA) to ensure the sterility and safety of the product prior to release for patient infusion. The risk of Mycoplasma contamination in cell culture is high. Gold standard testing follows USP 63 which requires a 28-day agar and broth cultivation method that is impractical for short shelf-life biologics. Several commercial molecular platforms have been marketed for faster raw material and product release testing; however, little performance data are available in the literature. In this study, we performed a proof-of-principle analysis to evaluate the performance of five commercial molecular assays, including the MycoSEQ Mycoplasma detection kit (Life Technologies), the MycoTOOL Mycoplasma real-time detection kit (Roche), the VenorGEM qOneStep kit (Minerva Biolabs), the ATCC universal Mycoplasma detection kit, and the Biofire Mycoplasma assay (bioMérieux Industry) using 10 cultured Mollicutes spp., with each at four log-fold dilutions (1,000 CFU/mL to 1 CFU/mL) in biological duplicates with three replicates per condition (n = 6) to assess limit of detection (LOD) and repeatability. Additional testing was performed in the presence of tumor infiltrating lymphocytes (TILs). Based on LOD alone, the Biofire Mycoplasma assay was most sensitive followed by the MycoSEQ and MycoTOOL which were comparable. We showed that not all assays were capable of meeting the ≤10 CFU/mL LOD to replace culture-based methods according to European and Japanese pharmacopeia standards. No assay interference was observed when testing in the presence of TILs.


Assuntos
Mycoplasma , Humanos , Limite de Detecção , Técnicas de Cultura de Células , Padrões de Referência , Terapia Baseada em Transplante de Células e Tecidos
8.
Appl Environ Microbiol ; 89(5): e0209522, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098937

RESUMO

Male killing (MK) is a type of reproductive manipulation induced by microbes, where sons of infected mothers are killed during development. MK is a strategy that enhances the fitness of the microbes, and the underlying mechanisms and the process of their evolution have attracted substantial attention. Homona magnanima, a moth, harbors two embryonic MK bacteria, namely, Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), and a larval MK virus, Osugoroshi virus (OGV; Partitiviridae). However, whether the three distantly related male killers employ similar or different mechanisms to accomplish MK remains unknown. Here, we clarified the differential effects of the three male killers on the sex-determination cascades and development of H. magnanima males. Reverse transcription-PCR demonstrated that Wolbachia and Spiroplasma, but not OGVs, disrupted the sex-determination cascade of males by inducing female-type splice variants of doublesex (dsx), a downstream regulator of the sex-determining gene cascade. We also found that MK microbes altered host transcriptomes in different manners; Wolbachia impaired the host dosage compensation system, whereas Spiroplasma and OGVs did not. Moreover, Wolbachia and Spiroplasma, but not OGVs, triggered abnormal apoptosis in male embryos. These findings suggest that distantly related microbes employ distinct machineries to kill males of the identical host species, which would be the outcome of the convergent evolution. IMPORTANCE Many microbes induce male killing (MK) in various insect species. However, it is not well understood whether microbes adopt similar or different MK mechanisms. This gap in our knowledge is partly because different insect models have been examined for each MK microbe. Here, we compared three taxonomically distinct male killers (i.e., Wolbachia, Spiroplasma, and a partiti-like virus) that infect the same host. We provided evidence that microbes can cause MK through distinct mechanisms that differ in the expression of genes involved in sex determination, dosage compensation, and apoptosis. These results imply independent evolutionary scenarios for the acquisition of their MK ability.


Assuntos
Mariposas , Spiroplasma , Wolbachia , Animais , Feminino , Masculino , Simbiose , Larva/microbiologia , Reprodução , Apoptose , Wolbachia/genética , Spiroplasma/genética
9.
BMC Microbiol ; 23(1): 260, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716961

RESUMO

BACKGROUND: Tsetse flies are cyclical vectors of African trypanosomiasis (AT). The flies have established symbiotic associations with different bacteria that influence certain aspects of their physiology. Vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by bacterial endosymbionts amongst other factors. Symbiotic interactions may provide an avenue for AT control. The current study provided prevalence of three tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. RESULTS: Tsetse flies were collected and dissected from five different locations. DNA was extracted and polymerase chain reaction used to detect presence of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts, using species specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the three symbionts. Among infected flies, six (6.31%) had Wolbachia and Spiroplasma mixed infection. The overall symbiont prevalence was 0.88, 3.66 and 11.00% respectively, for Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts. Prevalence varied between countries and tsetse fly species. Neither Spiroplasma species nor S. glossinidius were detected in samples from Cameroon and Nigeria respectively. CONCLUSION: The present study revealed, for the first time, presence of Spiroplasma species infections in tsetse fly populations in Chad and Nigeria. These findings provide useful information on repertoire of bacterial flora of tsetse flies and incite more investigations to understand their implication in the vector competence of tsetse flies.


Assuntos
Glossinidae , Spiroplasma , Tripanossomíase Africana , Moscas Tsé-Tsé , Wolbachia , Animais , Wolbachia/genética , Camarões , Chade , Nigéria , Spiroplasma/genética
10.
Mol Ecol ; 32(12): 3340-3351, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946891

RESUMO

The outcome of natural enemy attack in insects is commonly impacted by the presence of defensive microbial symbionts residing within the host. The thermal environment is a factor known to affect symbiont-mediated traits in insects. Lower temperatures, for instance, have been shown to reduce Spiroplasma-mediated protection in Drosophila. Our understanding of protective symbiosis requires a deeper understanding of environment-symbiont-protection links. Here, we dissect the effect of the thermal environment on Spiroplasma-mediated protection against Leptopilina boulardi in Drosophila melanogaster by examining the effect of temperature before, during and after wasp attack on fly survival and wasp success. We observed that the developmental temperature of the mothers of attacked larvae, but not the temperature of the attacked larvae themselves during or after wasp attack, strongly determines the protective influence of Spiroplasma. Cooler maternal environments were associated with weaker Spiroplasma protection of their progeny. The effect of developmental temperature on Spiroplasma-mediated protection is probably mediated by a reduction in Spiroplasma titre. These results indicate that historical thermal environment is a stronger determinant of protection than current environment. Furthermore, protection is a character with transgenerational nongenetic variation probably to produce complex short-term responses to selection. In addition, the cool sensitivity of the Spiroplasma-Drosophila symbioses contrasts with the more common failure of symbioses at elevated temperatures, indicating a need to understand the mechanistic basis of low temperature sensitivity on this symbiosis.


Assuntos
Spiroplasma , Vespas , Animais , Vespas/fisiologia , Drosophila melanogaster/genética , Drosophila , Larva/fisiologia , Temperatura , Simbiose
11.
Microb Pathog ; 184: 106365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741306

RESUMO

Spiroplasma eriocheiris is one of the major pathogenic bacteria in crustaceans, featuring high infectivity, rapid transmission, and an absence of effective control strategies, resulting in significant economic losses to the aquaculture industry. Research into virulence-related factors provides an important perspective to clarify how Spiroplasma eriocheiris is pathogenic to shrimps and crabs. Therefore, in this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was utilized to undertake a differential proteomic analysis of high- and low-virulence Spiroplasma eriocheiris strains at different growth phases. A total of 868 differentially expressed proteins (DEPs) were obtained, of which 31 novel proteins were identified by proteogenomic analysis. There were 62, 61, 175, and 235 DEPs between the log phase (YD) and non-log phase (YFD) of the high-virulence strain, between the log phase (CD) and non-log phase (CFD) of the low-virulence strain, between YD and CD, and between CFD and YFD, respectively. All the DEPs were compared with virulence protein databases (MvirDB and VFDB), and 68 virulence proteins of Spiroplasma eriocheiris were identified, of which 12 were involved in a total of 21 metabolic pathways, including motility, chemotaxis, growth, metabolism and virulence of the bacteria. The results of this study form the basis for further research into the molecular mechanism of virulence and physiological differences between high- and low-virulence strains of Spiroplasma eriocheiris, and provide a scientific basis for a detailed understanding of its pathogenesis.


Assuntos
Braquiúros , Spiroplasma , Animais , Proteômica/métodos , Virulência , Spiroplasma/genética , Braquiúros/microbiologia
12.
Microb Ecol ; 85(2): 730-736, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35192040

RESUMO

Arthropods are known to harbor several endosymbionts, such as Cardinium, Rickettsia, Spiroplasma, and Wolbachia. Wolbachia, for example, are the most widespread known endosymbionts in the world, which are found in about half of all arthropod species. To increase their transmission, these endosymbionts must manipulate their hosts in several ways such as cytoplasmic incompatibility and male killing. In tropical regions, endosymbiont diversity has not been studied exhaustively. Here, we checked four endosymbionts, including Cardinium, Rickettsia, Spiroplasma, and Wolbachia, in eleven Drosophila species found in Thai Peninsula. The Wolbachia strain wRi-like was found in all populations of Drosophila ananassae and Drosophila simulans. Furthermore, we found two new strains, wMalA and wMalB, in two populations of Drosophila malerkotliana. Besides Wolbachia, we did not find any of the above endosymbionts in all fly species. This work reveals the hidden diversity of endosymbionts in Drosophila and is the first exhaustive study on Drosophila in the region.


Assuntos
Rickettsia , Spiroplasma , Wolbachia , Animais , Masculino , Drosophila , Incidência , Tailândia , Simbiose , Bacteroidetes
13.
Microb Ecol ; 86(4): 2923-2933, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658881

RESUMO

Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia, two strains of Wolbachia, Spiroplasma, Providencia, Serratia, Pseudochrobactrum, Lactococcus, and Stenotrophomonas. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia, Wolbachia, and Spiroplasma, was performed on a larger sample size (n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of Rickettsia was significantly correlated with latitude and temperature, while that of Wolbachia and Spiroplasma was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the N. tenuis microbiome is typical for predatory arthropods rather than sap-feeding insects. Rickettsia and Wolbachia were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop N. tenuis as a biological control agent.


Assuntos
Hemípteros , Microbiota , Rickettsia , Spiroplasma , Wolbachia , Humanos , Animais , Agentes de Controle Biológico , Hemípteros/genética , RNA Ribossômico 16S/genética , Rickettsia/genética , Wolbachia/genética , Simbiose
14.
Microb Ecol ; 85(1): 247-263, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34939130

RESUMO

The animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.


Assuntos
Culicidae , Microbioma Gastrointestinal , Microbiota , Microsporídios , Animais , Feminino , Culicidae/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Microsporídios/genética
15.
Fish Shellfish Immunol ; 138: 108810, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169109

RESUMO

N-glycosylation, one of the main protein posttranslational modifications (PTMs), plays an important role in the pathogenic process of pathogens through binding and invasion of host cells or regulating the internal environment of host cells to benefit their survival. However, N-glycosylation has remained mostly unexplored in Spiroplasma eriocheiris, a novel type of pathogen which has serious adverse effects on aquaculture. In most cases, N-glycoproteins can be detected and analyzed by lectins dependent on sugar recognition domains. In this study, three Macrobrachium nipponense C-type lectins, namely, MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3, were used to screen S. eriocheiris glycosylated proteins. First, qRT-PCR results showed that the expression levels of the three kinds of lectins were all significantly up-regulated in prawn hearts when the host was against S. eriocheiris infection. A bacterial binding assay showed that purified recombinant MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3 could directly bind to S. eriocheiris in vitro. Second, three S. eriocheiris glycosylated proteins, ATP synthase subunit beta (ATP beta), molecular chaperone Dnak (Dnak) and fructose bisphosphate aldolase (FBPA), were screened and identified using the three kinds of full-length C-type lectins. Far-Western blot and coimmunoprecipitation (CO-IP) further demonstrated that there were interactions between the three lectins with ATP beta, Dnak and FBPA. Furthermore, antibody neutralization assay results showed that pretreatment of S. eriocheiris with ATP beta, Dnak and FBPA antibodies could significantly block this pathogen infection. All the above studies showed that the glycosylated protein played a vital role in the process of S. eriocheiris infection.


Assuntos
Lectinas , Palaemonidae , Spiroplasma , Palaemonidae/imunologia , Palaemonidae/microbiologia , Glicosilação , Lectinas/química , Lectinas/metabolismo , Spiroplasma/metabolismo , Imunidade Inata , Expressão Gênica , Transcrição Gênica , Far-Western Blotting , Processamento de Proteína Pós-Traducional , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno
16.
Phytopathology ; 113(2): 299-308, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35984373

RESUMO

Spiroplasma citri is the pathogen that causes citrus stubborn disease (CSD). Infection of citrus with S. citri has been shown to cause leaf mottling, reduce fruit yield, and stunt tree growth. Fruit from trees exhibiting symptoms of CSD are misshapen and discolored. The symptoms of CSD are easily confused with nutrient deficiencies or symptoms of citrus greening disease. In this study, young Washington navel oranges (Citrus sinensis) were graft-inoculated with budwood originating from trees confirmed to be infected with S. citri. Leaf samples were collected monthly for 10 months for metabolomics and differential gene expression analyses. Significant differences in the concentration of metabolites and expressed genes were observed between control and S. citri-infected trees throughout the experiment. Metabolites and genes associated with important defense and stress pathways, including jasmonic acid signaling, cell wall modification, amino acid biosynthesis, and the production of antioxidant and antimicrobial secondary metabolites, were impacted by S. citri throughout the study, and even prior to symptom development. This work fills a current gap in knowledge surrounding the pathogenicity of S. citri and provides an updated mechanistic explanation for the development of CSD symptoms in S. citri-infected plants.


Assuntos
Citrus sinensis , Doenças das Plantas , Spiroplasma citri , Transcriptoma , Citrus sinensis/genética , Citrus sinensis/microbiologia , Spiroplasma citri/patogenicidade , Spiroplasma citri/fisiologia , Metaboloma , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia
17.
J Invertebr Pathol ; 201: 108017, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926345

RESUMO

The tremor disease (TD) caused by Spiroplasma eriocheiris is the most destructive disease of the Chinese mitten crab, Eriocheir sinensis. This study attempts to construct Multienzyme Isothermal Rapid Amplification (MIRA), a quick and simple nucleic acid amplification method that operates at room temperature. Based on the gene sequences of S. eriocheiris, appropriate amplification primers were constructed and screened in this investigation. Both the relevant specific probe and the chosen specific amplification primers were designed and labeled. The MIRA and MIRA-LFD reaction conditions were then optimized. The result showed MIRA and MIRA-FFD could identify S. eriocheiris at 37 °C in 30 min and 15 min, respectively. To investigate the specificity of MIRA and MIRA-LFD, three Gram-negative bacteria (Bacillus subtilis, Bacillus thuringiensis, and Staphylococcus aureus), three Gram-positive bacteria (Escherichia coli, Aeromonas hydrophila, and Salmonella typhimurium) and S. eriocheiris were selected. The result showed MIRA and MIRA-LFD were highly specific to S. eriocheiris and did not react with other six pathogens. The sensitivities of PCR, MIRA, and MIRA-LFD were then evaluated. The result showed the detection limit of PCR is 1 ng/L whereas the detection limit of MIRA and MIRA-LFD is 10 pg/L. Finally, the established MIRA and MIRA-LFD detection methods had the advantages of being quick, sensitive, and specific for S. eriocheiris detection, as well as not requiring any specialized equipment.


Assuntos
Spiroplasma , Animais , Spiroplasma/genética , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico
18.
J Invertebr Pathol ; 197: 107887, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669676

RESUMO

The invasive alien ladybird Harmonia axyridis (Coleoptera: Coccinellidae) hosts a wide range of natural enemies. Many observations have been done in nature but experimental studies of interactions of multiple enemies on Ha. axyridis are rare. In light of this knowledge gap, we tested whether the host phenotype and presence of bacterial endosymbionts Spiroplasma and Wolbachia affected parasitism of Ha. axyridis by the ectoparasitic fungus Hesperomyces harmoniae (Ascomycota: Laboulbeniales). We collected 379 Ha. axyridis in the Czech Republic, processed specimens, including screening for He. harmoniae and a molecular assessment for bacteria, and calculated fecundity and hatchability of females. We found that high hatchability rate (71 %) was conditioned by high fecundity (20 eggs daily or more). The average parasite prevalence of He. harmoniae was 53 %, while the infection rate of Spiroplasma was 73 % in ladybirds that survived in winter conditions. Wolbachia was only present in 2 % of the analyzed ladybirds. Infection by either He. harmoniae or Spiroplasma did not differ among host color morphs. In the novemdecimsignata morph, younger individuals (with orange elytra) were more heavily parasitized compared to old ones (with red elytra). Fecundity and hatchability rate of females were unaffected by infection with either He. harmoniae or Spiroplasma. However, female ladybirds co-infected with He. harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont.


Assuntos
Ascomicetos , Besouros , Spiroplasma , Wolbachia , Feminino , Animais , Besouros/microbiologia , Fertilidade , Estações do Ano
19.
Emerg Infect Dis ; 28(8): 1681-1685, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876734

RESUMO

We report 2 cases of Spiroplasma ixodetis infection in an immunocompetent patient and an immunocompromised patient who had frequent tick exposure. Fever, thrombocytopenia, and increased liver aminotransferase levels raised the suspicion of anaplasmosis, but 16S rRNA PCR and Sanger sequencing yielded a diagnosis of spiroplasmosis. Both patients recovered after doxycycline treatment.


Assuntos
Anaplasmose , Picadas de Carrapatos , Carrapatos , Anaplasmose/diagnóstico , Animais , Humanos , Hospedeiro Imunocomprometido , RNA Ribossômico 16S/genética , Spiroplasma , Suécia
20.
BMC Microbiol ; 22(1): 209, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042402

RESUMO

BACKGROUND: Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. RESULTS: In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. CONCLUSIONS: Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.


Assuntos
Lepidópteros , Spiroplasma , Wolbachia , Animais , Filogenia , Spiroplasma/genética , Simbiose/genética , Wolbachia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA