Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Adv Exp Med Biol ; 1435: 273-314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175480

RESUMO

Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.


Assuntos
Clostridioides difficile , Microbioma Gastrointestinal , Humanos , Morfogênese , Oxigênio , Exame Físico
2.
Protein Expr Purif ; 210: 106323, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331410

RESUMO

Anaerobic fungi (Neocallimastigomycetes) found in the guts of herbivores are biomass deconstruction specialists with a remarkable ability to extract sugars from recalcitrant plant material. Anaerobic fungi, as well as many species of anaerobic bacteria, deploy multi-enzyme complexes called cellulosomes, which modularly tether together hydrolytic enzymes, to accelerate biomass hydrolysis. While the majority of genomically encoded cellulosomal genes in Neocallimastigomycetes are biomass degrading enzymes, the second largest family of cellulosomal genes encode spore coat CotH domains, whose contribution to fungal cellulosome and/or cellular function is unknown. Structural bioinformatics of CotH proteins from the anaerobic fungus Piromyces finnis shows anaerobic fungal CotH domains conserve key ATP and Mg2+ binding motifs from bacterial Bacillus CotH proteins known to act as protein kinases. Experimental characterization further demonstrates ATP hydrolysis activity in the presence and absence of substrate from two cellulosomal P. finnis CotH proteins when recombinantly produced in E. coli. These results present foundational evidence for CotH activity in anaerobic fungi and provide a path towards elucidating the functional contribution of this protein family to fungal cellulosome assembly and activity.


Assuntos
Celulossomas , Celulossomas/genética , Celulossomas/química , Celulossomas/metabolismo , Escherichia coli/metabolismo , Anaerobiose , Proteínas de Bactérias/química , Esporos/metabolismo , Trifosfato de Adenosina/metabolismo , Fungos
3.
J Bacteriol ; 204(6): e0007922, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638784

RESUMO

The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.


Assuntos
Bacillus , Esporos Bacterianos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Clostridium/genética , Firmicutes , Humanos , Filogenia , Esporos Bacterianos/genética
4.
Mol Microbiol ; 114(6): 934-951, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32592201

RESUMO

Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB , formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG , interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Esporos Bacterianos/fisiologia , Sequência de Aminoácidos , Bacillus subtilis/citologia , Parede Celular/genética , Parede Celular/metabolismo , Fosforilação , Deleção de Sequência , Esporos Bacterianos/citologia
5.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817091

RESUMO

The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation.IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/fisiologia , Esporos Bacterianos/enzimologia , Trifosfato de Adenosina/metabolismo , Clostridioides difficile/enzimologia
6.
Biol Chem ; 401(12): 1375-1387, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32769218

RESUMO

In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.


Assuntos
Membrana Celular/metabolismo , Myxococcus xanthus/química , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Membrana Celular/química , Myxococcus xanthus/citologia , Myxococcus xanthus/metabolismo , Polissacarídeos Bacterianos/química
7.
J Bacteriol ; 201(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30455281

RESUMO

At a late stage in spore development in Bacillus subtilis, the mother cell directs synthesis of a layer of peptidoglycan known as the cortex between the two forespore membranes, as well as the assembly of a protective protein coat at the surface of the forespore outer membrane. SafA, the key determinant of inner coat assembly, is first recruited to the surface of the developing spore and then encases the spore under the control of the morphogenetic protein SpoVID. SafA has a LysM peptidoglycan-binding domain, SafALysM, and localizes to the cortex-coat interface in mature spores. SafALysM is followed by a region, A, required for an interaction with SpoVID and encasement. We now show that residues D10 and N30 in SafALysM, while involved in the interaction with peptidoglycan, are also required for the interaction with SpoVID and encasement. We further show that single alanine substitutions on residues S11, L12, and I39 of SafALysM that strongly impair binding to purified cortex peptidoglycan affect a later stage in the localization of SafA that is also dependent on the activity of SpoVE, a transglycosylase required for cortex formation. The assembly of SafA thus involves sequential protein-protein and protein-peptidoglycan interactions, mediated by the LysM domain, which are required first for encasement then for the final localization of the protein in mature spores.IMPORTANCEBacillus subtilis spores are encased in a multiprotein coat that surrounds an underlying peptidoglycan layer, the cortex. How the connection between the two layers is enforced is not well established. Here, we elucidate the role of the peptidoglycan-binding LysM domain, present in two proteins, SafA and SpoVID, that govern the localization of additional proteins to the coat. We found that SafALysM is a protein-protein interaction module during the early stages of coat assembly and a cortex-binding module at late stages in morphogenesis, with the cortex-binding function promoting a tight connection between the cortex and the coat. In contrast, SpoVIDLysM functions only as a protein-protein interaction domain that targets SpoVID to the spore surface at the onset of coat assembly.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo , Mapeamento de Interação de Proteínas , Esporos Bacterianos/enzimologia , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Análise Mutacional de DNA , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Transporte Proteico
8.
J Bacteriol ; 201(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31235516

RESUMO

Polysaccharides (PS) decorate the surface of dormant endospores (spores). In the model organism for sporulation, Bacillus subtilis, the composition of the spore PS is not known in detail. Here, we have assessed how PS synthesis enzymes produced during the late stages of sporulation affect spore surface properties. Using four methods, bacterial adhesion to hydrocarbons (BATH) assays, India ink staining, transmission electron microscopy (TEM) with ruthenium red staining, and scanning electron microscopy (SEM), we characterized the contributions of four sporulation gene clusters, spsABCDEFGHIJKL, yfnHGF-yfnED, ytdA-ytcABC, and cgeAB-cgeCDE, on the morphology and properties of the crust, the outermost spore layer. Our results show that all mutations in the sps operon result in the production of spores that are more hydrophobic and lack a visible crust, presumably because of reduced PS deposition, while mutations in cgeD and the yfnH-D cluster noticeably expand the PS layer. In addition, yfnH-D mutant spores exhibit a crust with an unusual weblike morphology. The hydrophobic phenotype from sps mutant spores was partially rescued by a second mutation inactivating any gene in the yfnHGF operon. While spsI, yfnH, and ytdA are paralogous genes, all encoding glucose-1-phosphate nucleotidyltransferases, each paralog appears to contribute in a distinct manner to the spore PS. Our data are consistent with the possibility that each gene cluster is responsible for the production of its own respective deoxyhexose. In summary, we found that disruptions to the PS layer modify spore surface hydrophobicity and that there are multiple saccharide synthesis pathways involved in spore surface properties.IMPORTANCE Many bacteria are characterized by their ability to form highly resistant spores. The dormant spore state allows these species to survive even the harshest treatments with antimicrobial agents. Spore surface properties are particularly relevant because they influence spore dispersal in various habitats from natural to human-made environments. The spore surface in Bacillus subtilis (crust) is composed of a combination of proteins and polysaccharides. By inactivating the enzymes responsible for the synthesis of spore polysaccharides, we can assess how spore surface properties such as hydrophobicity are modulated by the addition of specific carbohydrates. Our findings indicate that several sporulation gene clusters are responsible for the assembly and allocation of surface polysaccharides. Similar mechanisms could be modulating the dispersal of infectious spore-forming bacteria.


Assuntos
Bacillus subtilis/fisiologia , Mutação , Óperon , Polissacarídeos/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hidrocarbonetos/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Família Multigênica , Esporos Bacterianos/genética
9.
Anaerobe ; 58: 73-79, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31034928

RESUMO

Increased antibiotic usage is the main risk factor for gut microbiota dysbiosis. In dysbiosis, there is an increased susceptibility to intestinal pathogens, such as Clostridium difficile infection, the leading cause of hospital-acquired infection worldwide. High-spectrum antibiotics, such as vancomycin or metronidazole, also increases the risk of developing CDI symptoms after the treatment. An impaired immune response could also be responsible for the high incidence of recurrence of CDI (R-CDI), suggesting that immune system stimulation could help eradicate the infection in patients suffering multiple episodes in CDI or prevent the infective course. Here, we discuss novel immunotherapeutic approaches that aid the immune system to target C. difficile and how these can be improved.


Assuntos
Vacinas Bacterianas/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/terapia , Imunoterapia/métodos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/isolamento & purificação , Pesquisa Biomédica/tendências , Humanos
10.
J Basic Microbiol ; 59(8): 853-857, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250936

RESUMO

The identification of the ubiquitous spore-forming bacterium Brevibacillus laterosporus, whose interest in pharma, agriculture, and other industrial sectors is raising, mostly relies on 16S ribosomal RNA gene sequence analysis. However, due to bacterial gene homology, this method appears insufficient for a proper discrimination of this species, so that the availability of other target genes is necessary. Leveraging the morphological and genetic feature uniqueness of B. laterosporus, a sensitive and reliable detection and quantification method based on polymerase chain reaction (PCR) and quantitative PCR assays, respectively, was developed. Targeting a highly conserved spore surface protein-related gene, B. laterosporus could be easily found in different matrices including soil, food, and insect body. Primer set selectivity was confirmed to be very specific and no false positives or negatives were observed using DNA of different bacterial species as a template. The method developed is also suitable for the rapid identification of newly isolated B. laterosporus strains.


Assuntos
Técnicas Bacteriológicas/métodos , Brevibacillus/isolamento & purificação , Reação em Cadeia da Polimerase , Animais , Brevibacillus/genética , Brevibacillus/crescimento & desenvolvimento , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Microbiologia Ambiental , Genes Bacterianos/genética , Insetos/microbiologia , Sensibilidade e Especificidade , Análise de Sequência de DNA
11.
J Bacteriol ; 200(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712873

RESUMO

The coat of Bacillus subtilis spores is a multiprotein protective structure that also arbitrates many of the environmental interactions of the spore. The coat assembles around the cortex peptidoglycan layer and is differentiated into an inner and an outer layer and a crust. SafA governs assembly of the inner coat, whereas CotE drives outer coat assembly. SafA localizes to the cortex-coat interface. Both SafA and its short form C30 are substrates for Tgl, a coat-associated transglutaminase that cross-links proteins through ε-(γ-glutamyl)lysyl isopeptide bonds. We show that SafA and C30 are distributed between the coat and cortex layers. The deletion of tgl increases the extractability of SafA, mainly from the cortex. Tgl itself is mostly located in the inner coat and cortex. The localization of Tgl-cyan fluorescent protein (Tgl-CFP) is strongly, but not exclusively, dependent on safA However, the association of Tgl with the cortex requires safA Together, our results suggest an assembly pathway in which Tgl is first recruited to the forming spore in a manner that is only partially dependent on SafA and then is drafted to the cortex by SafA. Tgl, in turn, promotes the conversion of coat- and cortex-associated SafA into forms that resist extraction, possibly by catalyzing the cross-linking of SafA to other coat proteins, to the cortex, and/or to cortex-associated proteins. Therefore, the final assembly state of SafA relies on an autoregulatory pathway that requires the subcellular localization of a protein cross-linking enzyme. Tgl most likely exerts a "spotwelding" activity, cross-linking preformed complexes in the cortex and inner coat layers of spores.IMPORTANCE In this work, we show how two proteins work together to determine their subcellular location within the coat of bacterial endospores. Bacillus subtilis endospores are surrounded by a multilayer protein coat composed of over 80 proteins, which surrounds an underlying peptidoglycan layer (the spore cortex) protecting it from lytic enzymes. How specific coat proteins are targeted to specific layers of the coat is not well understood. We found that the protein SafA recruits a protein-cross-linking enzyme (a transglutaminase) to the cortex and inner layers of the coat, where both are cemented, by cross-linking, into macromolecular complexes.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Homeostase/fisiologia , Esporos Bacterianos/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Mutação , Esporos Bacterianos/genética
12.
J Proteome Res ; 17(2): 903-917, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29260567

RESUMO

Spores of Bacillus cereus pose a threat to food safety due to their high resistance to the heat or acid treatments commonly used to make food microbiologically safe. Spores may survive these treatments and later resume growth either on foodstuffs or, after ingestion, upon entering the gut they are capable of producing toxins, which cause either vomiting or diarrhea. The outer layers of the spore, the spore coat and exosporium, consist primarily of proteins that may serve as potential biomarkers for detection. The major morphogenetic protein CotE is important for correct assembly and attachment of the outermost layer, the exosporium, and by extension retention of many proteins. However, characterization of the proteins affected by deletion of CotE has been limited to electrophoretic patterns. Here we report the effect of CotE deletion on the insoluble fraction of the spore proteome through liquid chromatography-Fourier transform tandem mass spectrometry (LC-FTMS/MS) analysis. A total of 560 proteins have been identified in both mutant and wild-type spore coat isolates. A further 163 proteins were identified exclusively in wild-type spore isolates indicating that they are dependent on CotE for their association with the spore. Several of these are newly confirmed as associated with the exosporium, namely BC_2569 (BclF), BC_3345, BC_2427, BC_2878, BC_0666, BC_2984, BC_3481, and BC_2570. A total of 153 proteins were only identified in ΔCotE spore isolates. This was observed for proteins that are known or likely to be interacting with or are encased by CotE. Crucial spore proteins were quantified using a QconCAT reference standard, the first time this was used in a biochemically heterogeneous system. This allowed us to determine the absolute abundance of 21 proteins, which spanned across three orders of magnitude and together covered 5.66% ± 0.51 of the total spore weight. Applying the QconCAT methodology to the ΔCotE mutant allowed us to quantify 4.13% ± 0.14 of the spore total weight and revealed a reduction in abundance for most known exosporium associated proteins upon CotE deletion. In contrast, several proteins, either known or likely to be interacting with or encased by CotE (i.e., GerQ), were more abundant. The results obtained provide deeper insight into the layered spore structure such as which proteins are exposed on the outside of the spore. This information is important for developing detection methods for targeting spores in a food safety setting. Furthermore, protein stoichiometry and determination of the abundance of germination mediating enzymes provides useful information for germination and outgrowth model development.


Assuntos
Bacillus cereus/química , Proteínas de Bactérias/genética , Proteoma/genética , Esporos Bacterianos/química , Sequência de Aminoácidos , Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Microbiologia de Alimentos , Deleção de Genes , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Proteoma/química , Proteoma/isolamento & purificação , Proteoma/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem
13.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097448

RESUMO

The exosporium of Bacillus megaterium QM B1551 spores is morphologically distinct from exosporia observed for the spores of many other species. Previous work has demonstrated that unidentified genes carried on one of the large indigenous plasmids are required for the assembly of the Bacillus megaterium exosporium. Here, we provide evidence that pBM600-encoded orthologues of the Bacillus subtilis CotW and CotX proteins, which form the crust layer in spores of that species, are structural components of the Bacillus megaterium QM B1551 spore exosporium. The introduction of plasmid-borne cotW and orthologous cotX genes to the PV361 strain, which lacks all indigenous plasmids and produces spores that are devoid of an exosporium, results in the development of spores with a rudimentary exosporium-type structure. Additionally, purified recombinant CotW protein is shown to assemble at the air-water interface to form thin sheets of material, which is consistent with the idea that this protein may form a basal layer in the Bacillus megaterium QM B1551 exosporium.IMPORTANCE When starved of nutrients, some bacterial species develop metabolically dormant spores that can persist in a viable state in the environment for several years. The outermost layers of spores are of particular interest since (i) these represent the primary site for interaction with the environment and (ii) the protein constituents may have biotechnological applications. The outermost layer, or exosporium, in Bacillus megaterium QM B1551 spores is of interest, as it is morphologically distinct from the exosporia of spores of the pathogenic Bacillus cereus family. In this work, we provide evidence that structurally important protein constituents of the Bacillus megaterium exosporium are different from those in the Bacillus cereus family. We also show that one of these proteins, when purified, can assemble to form sheets of exosporium-like material. This is significant, as it indicates that spore-forming bacteria employ different proteins and mechanisms of assembly to construct their external layers.


Assuntos
Bacillus megaterium/química , Bacillus subtilis/química , Proteínas de Bactérias/química , Bacillus megaterium/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Mutação , Plasmídeos , Esporos Bacterianos
14.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29728391

RESUMO

The germination of Bacillus spores is triggered by certain amino acids and sugar molecules which permeate the outermost layers of the spore to interact with receptor complexes that reside in the inner membrane. Previous studies have shown that mutations in the hexacistronic gerP locus reduce the rate of spore germination, with experimental evidence indicating that the defect stems from reduced permeability of the spore coat to germinant molecules. Here, we use the ellipsoid localization microscopy technique to reveal that all six Bacillus cereus GerP proteins share proximity with cortex-lytic enzymes within the inner coat. We also reveal that the GerPA protein alone can localize in the absence of all other GerP proteins and that it has an essential role for the localization of all other GerP proteins within the spore. Its essential role is also demonstrated to be dependent on SafA, but not CotE, for localization, which is consistent with an inner coat location. GerP-null spores are shown also to have reduced permeability to fluorescently labeled dextran molecules compared to wild-type spores. Overall, the results support the hypothesis that the GerP proteins have a structural role within the spore associated with coat permeability.IMPORTANCE The bacterial spore coat comprises a multilayered proteinaceous structure that influences the distribution, survival, and germination properties of spores in the environment. The results from the current study are significant since they increase our understanding of coat assembly and architecture while adding detail to existing models of germination. We demonstrate also that the ellipsoid localization microscopy (ELM) image analysis technique can be used as a novel tool to provide direct quantitative measurements of spore coat permeability. Progress in all of these areas should ultimately facilitate improved methods of spore control in a range of industrial, health care, and environmental sectors.


Assuntos
Bacillus cereus/genética , Proteínas de Bactérias/genética , Genes Bacterianos/genética , Óperon/genética , Esporos Bacterianos/genética , Bacillus cereus/citologia , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Permeabilidade
15.
Semin Cell Dev Biol ; 46: 143-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26520023

RESUMO

Motility of bacterial cells promotes a range of important physiological phenomena such as nutrient detection, harm avoidance, biofilm formation, and pathogenesis. While much research has been devoted to the mechanism of bacterial swimming in liquid via rotation of flagellar filaments, the mechanisms of bacterial translocation across solid surfaces are poorly understood, particularly when cells lack external appendages such as rotary flagella and/or retractile type IV pili. Under such limitations, diverse bacteria at the single-cell level are still able to "glide" across solid surfaces, exhibiting smooth translocation of the cell along its long axis. Though multiple gliding mechanisms have evolved in different bacterial classes, most remain poorly characterized. One exception is the gliding motility mechanism used by the Gram-negative social predatory bacterium Myxococcus xanthus. The available body of research suggests that M. xanthus gliding motility is mediated by trafficked multi-protein (Glt) cell envelope complexes, powered by proton-driven flagellar stator homologues (Agl). Through coupling to the substratum via polysaccharide slime, Agl-Glt assemblies can become fixed relative to the substratum, forming a focal adhesion site. Continued directional transport of slime-associated substratum-fixed Agl-Glt complexes would result in smooth forward movement of the cell. In this review, we have provided a comprehensive synthesis of the latest mechanistic and structural data for focal adhesion-mediated gliding motility in M. xanthus, with emphasis on the role of each Agl and Glt protein. Finally, we have also highlighted the possible connection between the motility complex and a new type of spore coat assembly system, suggesting that gliding and cell envelope synthetic complexes are evolutionarily linked.


Assuntos
Aderência Bacteriana/fisiologia , Adesões Focais/fisiologia , Myxococcus xanthus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Citoplasma/metabolismo , Locomoção/fisiologia , Modelos Biológicos , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Periplasma/metabolismo , Propriedades de Superfície
16.
Microb Cell Fact ; 15(1): 153, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609116

RESUMO

BACKGROUND: Bacterial spores have been proposed as vehicles to display heterologous proteins for the development of mucosal vaccines, biocatalysts, bioremediation and diagnostic tools. Two approaches have been developed to display proteins on the spore surface: a recombinant approach, based on the construction of gene fusions between DNA molecules coding for a spore surface protein (carrier) and for the heterologous protein to be displayed (passenger); and a non-recombinant approach based on spore adsorption, a spontaneous interaction between negatively charged, hydrophobic spores and purified proteins. The molecular details of spore adsorption have not been fully clarified yet. RESULTS: We used the monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp. and Bacillus subtilis spores of a wild type and an isogenic mutant strain lacking the CotH protein to clarify the adsorption process. Mutant spores, characterized by a strongly altered coat, were more efficient than wild type spores in adsorbing mRFP but the interaction was less stable and mRFP could be in part released by raising the pH of the spore suspension. A collection of isogenic strains carrying GFP fused to proteins restricted in different compartments of the B. subtilis spore was used to localize adsorbed mRFP molecules. In wild type spores mRFP infiltrated through crust and outer coat, localized in the inner coat and was not surface exposed. In mutant spores mRFP was present in all surface layers, inner, outer coat and crust and was exposed on the spore surface. CONCLUSIONS: Our results indicate that different spores can be selected for different applications. Wild type spores are preferable when a very tight protein-spore interaction is needed, for example to develop reusable biocatalysts or bioremediation systems for field applications. cotH mutant spores are instead preferable when the heterologous protein has to be displayed on the spore surface or has to be released, as could be the case in mucosal delivery systems for antigens and drugs, respectively.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Esporos Bacterianos/química , Esporos Bacterianos/genética , Adsorção , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Fluorescência , Mutação , Proteínas Recombinantes/metabolismo , Esporos Bacterianos/metabolismo , Proteína Vermelha Fluorescente
17.
Food Microbiol ; 45(Pt A): 54-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25481062

RESUMO

Resistance characteristics of bacterial endospores towards various environmental stresses such as chemicals and heat are in part attributed to their coat proteins. Heat resistance is developed in a late stage of sporulation and during maturation of released spores. Using our gel-free proteomic approach and LC-FT-ICR-MS/MS analysis we have monitored the efficiency of the tryptic digestion of proteins in the coat during spore maturation over a period of eight days, using metabolically (15)N labeled mature spores as reference. The results showed that during spore maturation the loss of digestion efficiency of outer coat and crust proteins synchronized with the increase in heat resistance. This implicates that spore maturation involves chemical cross-linking of outer coat and crust layer proteins leaving the inner coat layer proteins unmodified. It appears that digestion efficiencies of spore surface proteins can be linked to their location within the coat and crust layers. We also attempted to study a possible link between spore maturation and the observed heterogeneity in spore germination.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Microbiologia de Alimentos , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Cromatografia Líquida , Reagentes de Ligações Cruzadas , Temperatura Alta , Proteômica , Esporos Bacterianos , Espectrometria de Massas em Tandem , Fatores de Tempo
18.
Biotechnol Bioeng ; 111(4): 654-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24203291

RESUMO

The bacillus spore coat confers chemical and biological resistance, thereby protecting the core from harsh environments. The primarily protein-based coat consists of recalcitrant protein crosslinks that endow the coat with such functional protection. Proteases are present in the spore coat, which play a putative role in coat degradation in the environment. However these enzymes are poorly characterized. Nonetheless given the potential for proteases to catalyze coat degradation, we screened 10 commercially available proteases for their ability to degrade the spore coats of B. cereus and B. anthracis. Proteinase K and subtilisin Carlsberg, for B. cereus and B. anthracis spore coats, respectively, led to a morphological change in the otherwise impregnable coat structure, increasing coat permeability towards cortex lytic enzymes such as lysozyme and SleB, thereby initiating germination. Specifically in the presence of lysozyme, proteinase K resulted in 14-fold faster enzyme induced germination and exhibited significantly shorter lag times, than spores without protease pretreatment. Furthermore, the germinated spores were shown to be vulnerable to a lytic enzyme (PlyPH) resulting in effective spore killing. The spore surface in response to proteolytic degradation was probed using scanning electron microscopy (SEM), which provided key insights regarding coat degradation. The extent of coat degradation and spore killing using this enzyme-based pretreatment approach is similar to traditional, yet far harsher, chemical decoating methods that employ detergents and strong denaturants. Thus the enzymatic route reduces the environmental burden of chemically mediated spore killing, and demonstrates that a mild and environmentally benign biocatalytic spore killing is achievable.


Assuntos
Bacillus , Peptídeo Hidrolases/metabolismo , Esporos Bacterianos , Amidoidrolases , Bacillus/química , Bacillus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Parede Celular , Desinfecção , Muramidase , Peptídeo Hidrolases/análise , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo
19.
Int J Food Microbiol ; 418: 110709, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38663147

RESUMO

Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.


Assuntos
Bacillus cereus , Temperatura Alta , Esporos Bacterianos , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Termotolerância , Adaptação Fisiológica , Sequenciamento Completo do Genoma , Microbiologia de Alimentos , Genoma Bacteriano , Evolução Biológica
20.
Front Microbiol ; 15: 1338751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721605

RESUMO

Clostridium sporogenes is an anaerobic spore-forming bacterium genetically related to Clostridium botulinum but lacks toxin genes. The sporulation mechanism and spore structures of anaerobic bacteria, including C. sporogenes, have not been comprehensively analyzed. Based on 16S rRNA gene analysis, it has been determined that C. sporogenes NBRC 14293 belongs to C. botulinum Group I. Moreover, SpoIVA is highly conserved in Bacillus and Clostridium species. Therefore, the aim of the present study is to investigate the mechanism of spore formation in C. sporogenes by performing a functional analysis of spoIVA encoding SpoIVA, a protein involved in the early development of the spore coat and cortex in Bacillus subtilis. Inactivation of spoIVA in C. sporogenes resulted in the loss of resistance of sporulating cells to lysozyme and heat treatments. Phase-contrast microscopy indicated that the inactivation of spoIVA caused the development of abnormal forespores and production of only a few immature spores. In the spoIVA mutant, abnormal swirl structures were detected in the mother cell using both phase-contrast and transmission electron microscopy. These swirls were stained with auramine O, pararosaniline hydrochloride, and 2-(4-aminophenyl)benzothiazole to examine the surface of mature spores of the wild-type strain. We found that the spore coat and exosporium proteins were misassembled and that they accumulated in the mother cells of the mutant. The results of this study indicate that SpoIVA is a spore morphogenetic protein, providing novel insights into spore morphogenesis in C. sporogenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA