Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant Biotechnol J ; 22(2): 472-483, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870930

RESUMO

The native, perennial shrub American hazelnut (Corylus americana) is cultivated in the Midwestern United States for its significant ecological benefits, as well as its high-value nut crop. Implementation of modern breeding methods and quantitative genetic analyses of C. americana requires high-quality reference genomes, a resource that is currently lacking. We therefore developed the first chromosome-scale assemblies for this species using the accessions 'Rush' and 'Winkler'. Genomes were assembled using HiFi PacBio reads and Arima Hi-C data, and Oxford Nanopore reads and a high-density genetic map were used to perform error correction. N50 scores are 31.9 Mb and 35.3 Mb, with 90.2% and 97.1% of the total genome assembled into the 11 pseudomolecules, for 'Rush' and 'Winkler', respectively. Gene prediction was performed using custom RNAseq libraries and protein homology data. 'Rush' has a BUSCO score of 99.0 for its assembly and 99.0 for its annotation, while 'Winkler' had corresponding scores of 96.9 and 96.5, indicating high-quality assemblies. These two independent assemblies enable unbiased assessment of structural variation within C. americana, as well as patterns of syntenic relationships across the Corylus genus. Furthermore, we identified high-density SNP marker sets from genotyping-by-sequencing data using 1343 C. americana, C. avellana and C. americana × C. avellana hybrids, in order to assess population structure in natural and breeding populations. Finally, the transcriptomes of these assemblies, as well as several other recently published Corylus genomes, were utilized to perform phylogenetic analysis of sporophytic self-incompatibility (SSI) in hazelnut, providing evidence of unique molecular pathways governing self-incompatibility in Corylus.


Assuntos
Corylus , Corylus/genética , Filogenia , Melhoramento Vegetal , Cromossomos , Genômica
2.
New Phytol ; 216(4): 1256-1267, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28892151

RESUMO

Angiosperm diversity has been shaped by mating system evolution, with the most common transition from outcrossing to self-fertilizing. To investigate the genetic basis of this transition, we performed crosses between two species endemic to the Canary Islands, the self-compatible (SC) species Tolpis coronopifolia and its self-incompatible (SI) relative Tolpis santosii. We scored self-compatibility as self-seed set of recombinant plants within two F2 populations. To map and genetically characterize the breakdown of SI, we built a draft genome sequence of T. coronopifolia, genotyped F2 plants using multiplexed shotgun genotyping (MSG), and located MSG markers to the genome sequence. We identified a single quantitative trait locus (QTL) that explains nearly all variation in self-seed set in both F2 populations. To identify putative causal genetic variants within the QTL, we performed transcriptome sequencing on mature floral tissue from both SI and SC species, constructed a transcriptome for each species, and then located each predicted transcript to the T. coronopifolia genome sequence. We annotated each predicted gene within the QTL and found two strong candidates for SI breakdown. Each gene has a coding sequence insertion/deletion mutation within the SC species that produces a truncated protein. Homologs of each gene have been implicated in pollen development, pollen germination, and pollen tube growth in other species.


Assuntos
Asteraceae/genética , Autoincompatibilidade em Angiospermas/genética , Estudos de Associação Genética , Variação Genética , Genoma de Planta , Locos de Características Quantitativas
3.
New Phytol ; 213(1): 430-439, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27448252

RESUMO

Self-incompatibility (SI) promotes outcrossing, but transitions to self-compatibility (SC) are frequent. Population genetic theory describing the breakdown of SI to SC suggests that, under most conditions, populations should be composed of either SI or SC individuals. Under a narrow range of conditions, theory suggests that SI may persist alongside reduced expression of SI (pseudo-SI, PSI) in mixed-mating populations. We studied genetic variation for PSI segregating in four SI populations of Leavenworthia alabamica by measurement of the heritability of pollen tube number after self-pollination. We tested for the role of the S-locus in this variation by sequencing seven S-alleles from plants with high pseudo-SC (PSC) and testing for the co-segregation of these alleles with PSC. We found a continuous distribution of PSC in all populations and 90% of plants exhibited PSC. The heritability ranged from 0.39 to 0.57. All seven S-alleles from plants with high PSC exhibited trans-specific polymorphism, and no stop codons were observed within the c. 600-bp region sequenced. One of these S-alleles was directly associated with the inheritance of PSC. We conclude that heritable variation in PSC is largely a result of genetic variation in the signaling cascade downstream of the S-locus reaction, together with the presence of one leaky S-allele.


Assuntos
Brassicaceae/genética , Variação Genética , Autoincompatibilidade em Angiospermas/genética , Alelos , Análise de Variância , Genótipo , Endogamia , Padrões de Herança/genética , Modelos Lineares , Fenótipo , Filogenia , Tubo Polínico/fisiologia , Análise de Regressão
4.
BMC Plant Biol ; 16(1): 175, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27496332

RESUMO

BACKGROUND: Cytoplasmic male sterility (CMS) is an ideal model for investigating the mitochondrial-nuclear interaction and down-regulated genes in CMS lines which might be the candidate genes for pollen development in rice. In this study, a set of rice alloplasmic sporophytic CMS lines was obtained by successive backcrossing of Meixiang B, with three different cytoplasmic types: D62A (D type), ZS97A (WA type) and XQZ-A (DA type). RESULTS: Using microarray, the anther transcript profiles of the three indica rice CMS lines revealed 622 differentially expressed genes (DEGs) in each of the three CMS lines compared with the maintainer line Meixiang B. GO and MapMan analysis indicated that these DEGs were mainly involved in lipid metabolism and cell wall organization. Compared with the gene expression of sporophytic and gametophytic CMS lines, 303 DEGs were identified and 56 of them were down-regulated in all the CMS lines of rice. These down-regulated DEGs in the CMS lines were found to be involved in tapetum or cell wall formation and their suppressed expression might be related to male sterility. Weighted gene co-expression network analysis (WGCNA) revealed that two modules were significantly associated with male sterility and many hub genes that were differentially expressed in the CMS lines. CONCLUSION: A large set of putative genes involved in anther development was identified in the present study. The results will give some information for the nuclear gene regulation by different cytoplasmic genotypes and provide a rich resource for further functional research on the pollen development in rice.


Assuntos
Citoplasma/genética , Oryza/genética , Infertilidade das Plantas , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Citoplasma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo
5.
Plants (Basel) ; 13(20)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39458819

RESUMO

Backcrossing between Sikitita and its male parent Arbequina, offers the possibility to check the suitability of different self-incompatibility models proposed for olive. To determine Sikitita's response to self- and cross-pollination treatments, including pollination with its father Arbequina, we compared the parameters following pollen-pistil interaction, the resulting initial and final fruit set, and the paternity of the seeds produced under different crosses. The results showed that Sikitita behaves as a self-incompatible cultivar due to the inhibition of pollen tube growth in the pistil of self-pollinated flowers. This incompatibility reaction led to a significant reduction of self-fertilization and fruit set. Seed paternity analyses confirmed the self-incompatibility response of Sikitita. A similar incompatibility response was observed in Sikitita flowers when hand-pollinated with pollen of Arbequina and Koroneiki. On the contrary, cross-pollination with Arbosana gave excellent results, with analyses showing that pollen of Arbosana is largely preferred by Sikitita to father its seeds more than the pollen of other cultivars presented in the orchard. The backcross failure of Sikitita with Arbequina pollen suggests that the self-incompatibility system in olives is not of the gametophytic type. In contrast, pollination tests fit features of previously reported sporophytic self-incompatibility systems. However, some amendments are proposed, among them the incompatibility groups for Sikitita and Koroneiki.

6.
Front Plant Sci ; 13: 800768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300011

RESUMO

Self-incompatibility (SI) protects plants from inbreeding depression due to self-pollination and promotes the outcrossing process to maintain a high degree of heterozygosity during evolution. Corylus is an important woody oil and nut species that shows sporophytic SI (SSI). Yet the molecular mechanism of SI in Corylus remains largely unknown. Here we conducted self- ("Dawei" × "Dawei") and cross-pollination ("Dawei" × "Liaozhen No. 7") experiments and then performed an RNA-Seq analysis to investigate the mechanism of pollen-stigma interactions and identify those genes that may be responsible for SSI in Corylus. We uncovered 19,163 up- and 13,314 downregulated genes from the comparison of different pollination treatments. These differentially expressed genes (DEGs) were significantly enriched in plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway-plant. We found many notable genes potentially involved in pollen-stigma interactions and SSI mechanisms, including genes encoding receptor-like protein kinases (RLK), calcium-related genes, disease-resistance genes, and WRKY transcription factors. Four upregulated and five downregulated DEGs were consistently identified in those comparison groups involving self-incompatible pollination, suggesting they had important roles in pollen-pistil interactions. We further identified the S-locus region of the Corylus heterophylla genome based on molecular marker location. This predicted S-locus contains 38 genes, of which 8 share the same functional annotation as the S-locus genes of Corylus avellana: two PIX7 homologous genes (EVM0002129 and EVM0025536), three MIK2 homologous genes (EVM0002422, EVM0005666, and EVM0009820), one aldose 1-epimerase (EVM0002095), one 3-dehydroquinate synthase II (EVM0021283), and one At3g28850 homologous gene (EVM0016149). By characterizing the pistil process during the early postpollination phase via transcriptomic analysis, this study provides new knowledge and lays the foundation for subsequent analyses of pollen-pistil interactions.

7.
Plants (Basel) ; 10(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34579470

RESUMO

The 'pollen test' and 'fruit set test' following controlled crossing combinations of parents are the most commonly used methods for pollination incompatibility studies in Olea europaea L. Self-incompatibility (SI), with diagnoses based on the pollen test and pollen germination, indicating self-compatibility, is not always followed by fruit set in this species. To solve this dispute, we have reconciled all observations into a new model. Mismatches between field and laboratory data and between methods are resolved by the dual-successive-screen model (DSSM) supposing two different loci for the expression of the two SI mechanisms. Pollen/stigma is controlled by diallelic SI, or DSI, inferring two G1 and G2 compatibility/incompatibility (C/I) groups for varieties, whereas pollen tubes in ovaries are controlled by poly-allelic SI or PASI with twenty C/I groups. To explain the selfing of varieties, we have suggested that some determinants in the pollen tube and stigma are unstable and degrade (DS-D for degradation of S-determinant) after three to five days, enabling some pollen tubes to avoid being rejected, hence reaching ovules. DSI and PASI in the DSSM and DS-D mechanisms, plus the andromonoecy of the olive tree, complexify SI studies. Inferences from DSSM and DS-D mechanisms in olive orchard practice are detailed.

8.
J Genet Genomics ; 48(8): 695-705, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34315684

RESUMO

Coordination between the sporophytic tissue and the gametic pollen within anthers is tightly controlled to achieve the optimal pollen fitness. Glucose-6-phosphate/phosphate translocator (GPT) transports glucose-6-phosphate, a key precursor of starch and/or fatty acid biosynthesis, into plastids. Here, we report the functional characterization of OsGPT1 in the rice anther development and pollen fertility. Pollen grains from homozygous osgpt1 mutant plants fail to accumulate starch granules, resulting in pollen sterility. Genetic analyses reveal a sporophytic effect for this mutation. OsGPT1 is highly expressed in the tapetal layer of rice anther. Degeneration of the tapetum, an important process to provide cellular contents to support pollen development, is impeded in osgpt1 plants. In addition, defective intine and exine are observed in the pollen from osgpt1 plants. Expression levels of multiple genes that are important to tapetum degeneration or pollen wall formation are significantly decreased in osgpt1 anthers. Previously, we reported that AtGPT1 plays a gametic function in the accumulation of lipid bodies in Arabidopsis pollen. This report highlights a sporophytic role of OsGPT1 in the tapetum degeneration and pollen development. The divergent functions of OsGPT1 and AtGPT1 in pollen development might be a result of their independent evolution after monocots and dicots diverged.


Assuntos
Glucose-6-Fosfato
9.
Genetics ; 215(3): 653-664, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32461267

RESUMO

Small noncoding RNAs are central regulators of genome activity and stability. Their regulatory function typically involves sequence similarity with their target sites, but understanding the criteria by which they specifically recognize and regulate their targets across the genome remains a major challenge in the field, especially in the face of the diversity of silencing pathways involved. The dominance hierarchy among self-incompatibility alleles in Brassicaceae is controlled by interactions between a highly diversified set of small noncoding RNAs produced by dominant S-alleles and their corresponding target sites on recessive S-alleles. By controlled crosses, we created numerous heterozygous combinations of S-alleles in Arabidopsis halleri and developed an real-time quantitative PCR assay to compare allele-specific transcript levels for the pollen determinant of self-incompatibility (SCR). This provides the unique opportunity to evaluate the precise base-pairing requirements for effective transcriptional regulation of this target gene. We found strong transcriptional silencing of recessive SCR alleles in all heterozygote combinations examined. A simple threshold model of base pairing for the small RNA-target interaction captures most of the variation in SCR transcript levels. For a subset of S-alleles, we also measured allele-specific transcript levels of the determinant of pistil specificity (SRK), and found sharply distinct expression dynamics throughout flower development between SCR and SRK In contrast to SCR, both SRK alleles were expressed at similar levels in the heterozygote genotypes examined, suggesting no transcriptional control of dominance for this gene. We discuss the implications for the evolutionary processes associated with the origin and maintenance of the dominance hierarchy among self-incompatibility alleles.


Assuntos
Alelos , Proteínas de Arabidopsis/genética , Pareamento de Bases , Inativação Gênica , RNA Interferente Pequeno/genética , Autoincompatibilidade em Angiospermas/genética , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Genes Recessivos , Heterozigoto , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
10.
Front Plant Sci ; 10: 725, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293602

RESUMO

Olive, representing one of the most important fruit crops of the Mediterranean area, is characterized by a general low fruit yield, due to numerous constraints, including alternate bearing, low flower viability, male-sterility, inter-incompatibility, and self-incompatibility (SI). Early efforts to clarify the genetic control of SI in olive gave conflicting results, and only recently, the genetic control of SI has been disclosed, revealing that olive possesses an unconventional homomorphic sporophytic diallelic system of SI, dissimilar from other described plants. This system, characterized by the presence of two SI groups, prevents self-fertilization and regulates inter-compatibility between cultivars, such that cultivars bearing the same incompatibility group are incompatible. Despite the presence of a functional SI, some varieties, in particular conditions, are able to set seeds following self-fertilization, a mechanism known as pseudo-self-compatibility (PSC), as widely reported in previous literature. Here, we summarize the results of previous works on SI in olive, particularly focusing on the occurrence of self-fertility, and offer a new perspective in view of the recent elucidation of the genetic architecture of the SI system in olive. Recent advances in research aimed at unraveling the molecular bases of SI and its breakdown in olive are also presented. The clarification of these mechanisms may have a huge impact on orchard management and will provide fundamental information for the future of olive breeding programs.

11.
Rice (N Y) ; 11(1): 30, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725869

RESUMO

BACKGROUND: Male sterility is a useful agronomic trait for breeding of self-pollinating crops and is often observed in the progenies of hybrids of distantly related species, for example, Oryza sativa L. subsp. indica and O. sativa L. subsp. japonica. To explore new male sterile lines in rice, we performed successive backcrosses using a japonica cultivar Taichung 65 (T65) as a recurrent pollen parent and various indica cultivars as the initial female parents. FINDINGS: We observed male sterile plants in the backcross progeny from an indica cultivar, Lebed. Both fertile and sterile plants were present in the BC4F1 generation. The sterile plants segregated for fertile and sterile plants when backcrossed with T65 in BC5F1, BC6F1 and BC7F1 with a ratio of 1:1. Conversely, all the backcross progenies from the fertile BC4F1 were consistently fertile. Anthers of the male sterile line were stunted and did not shed pollen; cross-sectional observations revealed defects in sporophytic cells. The male sterility appears to be caused by heterozygous alleles derived from T65 and Lebed. A male sterility gene was mapped between two INDEL markers on the long arm of chromosome 10, which corresponded to a 407 kb region in the Nipponbare genome. CONCLUSIONS: Since the heterozygous Lebed allele acts as dominant sporophytic pollen killer, it would be useful for recurrent selection breeding of japonica rice.

12.
Evolution ; 72(11): 2513-2536, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194754

RESUMO

Coexpression of genes in plant sporophytes and gametophytes allows correlated gametic and sporophytic selection. Theory predicts that, under outcrossing, an allele conferring greater pollen competitive ability should fix within a population unless antagonistic pleiotropy with the sporophyte stage is strong. However, under strong selfing, pollen competitiveness is immaterial as superior and inferior competitors are deposited on opposite stigmas, producing assortative competition. Because many plant species have mixed-mating systems, selfing should be critical in the spread and maintenance of pollen-expressed genes affecting competitiveness. We present two one-locus, two-allele population genetic models for the evolution of a locus controlling pleiotropic antagonism between pollen competitiveness and diploid fitness. Analytical solutions provide minimum and maximum selfing rates allowing invasion of alleles with greater diploid and haploid fitness, respectively. Further, polymorphism is only maintained when diploid selection is recessive. Fixation of the allele conferring greater pollen competitiveness may be prevented, even with weak sporophytic counterselection, with sufficiently high selfing. Finally, selfing expands and limits the range of haploid-diploid selection coefficients allowing polymorphism, depending on dominance and selfing mode.


Assuntos
Magnoliopsida/genética , Pólen/genética , Simulação por Computador , Genes de Plantas , Genética Populacional , Células Germinativas Vegetais , Magnoliopsida/fisiologia , Polimorfismo Genético
13.
Evol Appl ; 10(9): 855-859, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29151876

RESUMO

The new self-incompatibility system (SI) was presented by Saumitou-Laprade, Vernet, Vekemans et al. (2017). Evolutionary Applications based on 89 crosses between varieties in the olive tree. Four main points are not clear. We are examining here as follows: (i) the assertion that the self-incompatibility system is sporophytic was not sustained by pollen germination data; (ii) surprisingly, the new model does not explain that about one-third of pairwise combinations of olive varieties leads to asymmetric fruit setting; (iii) DNA preparation from one seed may contain two embryos, and thus, embryos should be separated before seed extraction; (iv) although effective self-fertility in olive varieties was reported by many studies, the DSI model fails to explain self-fertility in some olive varieties. Moreover, we cannot discuss result data, as science cannot be verified because variety names were encoded, this does not allow comparison of data with previous works. The DSI model on olive self-incompatibility should explain more features than the model based on four dominance levels shared by six S-alleles. Perspectives for orchard management based on this model may face serious limitations. An olive variety does not have a fifty percent chance of cross-incompatibility, but surely fewer, and thus, the sporophytic system limits fruit production. Evolutionary perspectives of self-incompatibility in Oleaceae should include data from the Jasmineae tribe that displays heterostyly SI.

14.
Evol Appl ; 10(9): 867-880, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29151878

RESUMO

The olive (Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self-incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra- and interspecific stigma tests on 89 genotypes representative of species-wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self-incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus. SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross-incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.

15.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27154621

RESUMO

The mating systems of species in small or fragmented populations impact upon their persistence. Small self-incompatible (SI) populations risk losing S allele diversity, responsible for the SI response, by drift thereby limiting mate availability and leading to population decline or SI system breakdown. But populations of relict and/or endemic species have resisted these demographic conditions over long periods suggesting their mating systems have adapted. To address a lack of empirical data on this topic, we studied the SI systems of three relict cliff-dwelling species of Sonchus section Pustulati (Asteraceae): S. masguindalii, S. fragilis and S. pustulatus in the western Mediterranean region. We performed controlled pollinations within and between individuals to measure index of SI (ISI) expression and identify S alleles in multiple population samples. Sonchus masguindalii and S. pustulatus showed strong SI (ISI = 0.6-1.0) compared to S. fragilis (ISI = 0.1-0.7). Just five S alleles were estimated for Spanish S. pustulatus and a moderate 11-15 S alleles for Moroccan S. pustulatus and S. fragilis, respectively. The fact that autonomous fruit set was generally improved by active self-pollination in self-compatible S. fragilis suggests that individuals with weak SI can show a wide range of outcrossing levels dependent on the degree of self or outcross pollen that pollinators bear. We conclude that frequent S allele dominance interactions that mask the incompatibility interactions of recessive S alleles leading to higher mate availability and partial breakdown of SI leading to mixed mating, both contribute to reproductive resilience in this group.

16.
Evolution ; 69(3): 683-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643740

RESUMO

According to the current, widely accepted paradigm, the evolutionary transition from hermaphroditism toward separate sexes occurs in two successive steps: an initial, intermediate step in which unisexual individuals, male or female, sterility mutants coexist with hermaphrodites and a final step that definitively establishes dioecy. Two nonexclusive processes can drive this transition: inbreeding avoidance and reallocation of resources from one sexual function to the other. Here, we report results of controlled crosses between males and hermaphrodites in Phillyrea angustifolia, an androdioecious species with two mutually intercompatible, but intraincompatible groups of hermaphrodites. We observed different segregation patterns that can be explained by: (1) epistatic interactions between two unlinked diallelic loci, determining sex and mating compatibility, and (2) a mutation with pleiotropic effects: female sterility, full compatibility of males with both hermaphrodite incompatibility groups, and complete male-biased sex-ratio distortion in one of the two groups. Modeling shows that these mechanisms can explain the high frequency of males in populations of P. angustifolia and can promote the maintenance of androdioecy without requiring inbreeding depression or resource reallocation. We thus argue that segregation distortion establishes the right conditions for the evolution of cryptic dioecy and potentially initiates the evolution toward separate sexes.


Assuntos
Evolução Biológica , Organismos Hermafroditas , Oleaceae/fisiologia , Cruzamentos Genéticos , Epistasia Genética , Genótipo , Endogamia , Modelos Genéticos , Mutação , Razão de Masculinidade
17.
Electron. j. biotechnol ; Electron. j. biotechnol;43: 8-15, Jan. 2020. tab
Artigo em Inglês | LILACS | ID: biblio-1087467

RESUMO

Background: Plant tissue cultures have the potential to reprogram the development of microspores from normal gametophytic to sporophytic pathway resulting in the formation of androgenic embryos. The efficiency of this process depends on the genotype, media composition and external conditions. However, this process frequently results in the regeneration of albino instead of green plants. Successful regeneration of green plants is affected by the concentration of copper sulfate (CuSO4) and silver nitrate (AgNO3) and the length of induction step. In this study, we aimed at concurrent optimization of these three factors in barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and triticale (x Triticosecale spp. Wittmack ex A. Camus 1927) using the Taguchi method. We evaluated uniform donor plants under varying experimental conditions of in vitro anther culture using the Taguchi approach, and verified the optimized conditions. Results: Optimization of the regeneration conditions resulted in an increase in the number of green regenerants compared with the control. Statistic Taguchi method for optimization of the in vitro tissue culture plant regeneration via anther cultures allowed reduction of the number of experimental designs from 27 needed if full factorial analysis is used to 9. With the increase in the number of green regenerants, the number of spontaneous doubled haploids decreased. Moreover, in barley and triticale, the number of albino regenerants was reduced. Conclusion: The statistic Taguchi approach could be successfully used for various factors (here components of induction media, time of incubation on induction media) at a one time, that may impact on cereals anther cultures to improve the regeneration efficiency


Assuntos
Produção Agrícola , Grão Comestível/crescimento & desenvolvimento , Modelos Estatísticos , Pigmentos Biológicos , Reguladores de Crescimento de Plantas , Pólen , Nitrato de Prata , Cor , Sulfato de Cobre , Androgênios
18.
Ecol Evol ; 4(6): 673-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24683451

RESUMO

Genetically controlled self-incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual-based spatial simulation to investigate the demographic and genetic consequences of different self-incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self-incompatible species will often be smaller and less viable than self-compatible species, particularly for shorter-lived organisms or where potential fecundity is low. At high ovule production and low mortality, self-incompatible and self-compatible species are demographically similar, thus self-incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self-incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self-incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue.

19.
Plant Biol (Stuttg) ; 15(5): 919-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23126331

RESUMO

Self-compatibility in apomictic pseudogamic species is considered fundamental to assure reproduction by seeds in extreme situations, making apomictic species more advantageous than sexual ones in these scenarios. Anemopaegma acutifolium is a polyploidy, apomictic sporophytic species with no endosperm development in ovules of unpollinated pistils, which indicates obligate pseudogamy. Thus, the aim of the present work is to study the breeding system and post-pollination events to test if there is similar pseudogamous development irrespective of pollination treatment. We analysed fruit and seed set obtained in controlled experimental pollinations, as well as embryo number per seed, and the progress of ovule penetration, fertilisation and early endosperm development between self- and cross-pollinated pistils. We found that the species is self-fertile and that spontaneous selfing fruit set is also possible, although emasculated flowers never form fruits. Selfed pistils were as efficient as crossed ones for all parameters analysed, except for a delay in endosperm development observed in the former that may be an effect of the late-acting self-incompatibility. Therefore, the avoidance of selfed pistil abortion seems to be promoted by the presence of adventitious embryos and a normal endosperm. We conclude that A. acutifolium shows apomixis-related pseudo-self-compatibility, as in other self-fertile apomictic species of Bignoniaceae, which confer reproductive assurance and increases fruit-set and persistence ability in fast-changing tropical habitats.


Assuntos
Bignoniaceae/fisiologia , Flores , Polinização , Reprodução Assexuada , Sementes , Ecossistema , Endosperma , Fertilidade , Frutas , Óvulo Vegetal , Poliploidia
20.
Biotechnol Adv ; 31(8): 1768-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24055817

RESUMO

Cultivated buckwheat, such as common (Fagopyrum esculentum Moench.) and tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat, is one of the most versatile crops for forage and food and has several benefits for human health. Interspecific hybridization between Fagopyrum species is of great importance to improvement of buckwheat. Hybridization would allow the transfer of agronomical beneficial characteristics from wild Fagopyrum species, including self-pollination and increased fertility, frost tolerance, and higher content of beneficial compounds. However, conventional breeding methods are only partially applicable because of the self-incompatibility and incompatibility barriers between different species. Present review summarizes the morphology of self-incompatibility, the genetic and cellular basis of incompatibility between different Fagopyrum species. In many interspecific crosses hybrid embryos are aborted after successful pollination due to post-zygotic incompatibility. The use of in vitro embryo rescue after interspecific hybridization has been successful in circumventing breeding barriers between Fagopyrum species. Methods applied successfully for the construction of interspecific hybrids are discussed in detail.


Assuntos
Cruzamento , Fagopyrum , Hibridização Genética , Especificidade da Espécie , Flores , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA