Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Chembiochem ; 25(7): e202300747, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38191871

RESUMO

Peptide side chain stapling has been proven to be an effective strategy for fine-tuning peptide properties. This innovative approach leads to the creation of stapled peptides characterized by stabilized α-helical conformations, enhanced protein-binding affinity, improved cell permeability, superior enzymatic stability, and numerous other advantages. Extensive research has explored the impact of various stapling bridges on the properties of these peptides, with limited investigation into the influence of bridge chirality, until very recently. In this concise review, we provide a brief overview of the current state of knowledge regarding the stereochemistry within the bridges of stapled peptides, offering insights into the potential applications of chiral bridges in the design and development of stapled peptides.


Assuntos
Peptídeos , Peptídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice
2.
Chemistry ; 30(19): e202304270, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285527

RESUMO

With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.


Assuntos
Peptídeos Cíclicos , alfa-MSH/análogos & derivados , Cisteína , Indóis
3.
J Pept Sci ; 30(4): e3551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37926859

RESUMO

Antibiotic resistance is an escalating global health threat. Due to their diverse mechanisms of action and evasion of traditional resistance mechanisms, peptides hold promise as future antibiotics. Their ability to disrupt bacterial membranes presents a potential strategy to combat drug-resistant infections and address the increasing need for effective antimicrobial treatments. Amphipathic α-helical peptides possess a distinctive molecular structure with both charged/hydrophilic and hydrophobic regions that interact with the bacterial cell membrane, disrupting its structural integrity. The α-helical amphipathic peptide aurein 1.2, secreted by the Australian frog Litoria aurea, is one of the shortest known antimicrobial peptides, spanning only 13 amino acids. The primary objective of this study was to investigate stapled and photoswitchable modifications of short helical peptides employing biocompatible chemistry, utilising aurein 1.2 as a model system. We developed various stapled versions of aurein 1.2 using biocompatible conjugation chemistry between dicyanopyridine and 1,2-aminothiols. While the commonly employed stapling pattern for longer staples is i, i + 7, we observed superior helicity in peptides stapled at positions i, i + 8. Molecular dynamics simulations confirmed both stapling patterns to support an α-helical peptide conformation. Additionally, we utilised a cysteine-selective photosensitive staple, perfluoro azobenzene, to explore photoswitchable variants of aurein 1.2. A double-cysteine variant stapled at i, i + 7 indeed exhibited a change in overall helicity induced by light. We further demonstrated the applicability of this staple to attach to cysteine residues in i, i + 7 positions of a helix in a model protein. While some of the stapled variants displayed substantial increase in helicity, minimal inhibitory concentration assays revealed that none of the stapled aurein 1.2 variants exhibited increased antimicrobial activity compared to the wildtype.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Animais , Sequência de Aminoácidos , Cisteína , Conformação Proteica , Austrália , Peptídeos/farmacologia , Peptídeos/química , Anuros , Bactérias
4.
J Pept Sci ; 30(6): e3566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38271799

RESUMO

Figainin 2 is a cationic, hydrophobic, α-helical host-defense peptide with 28 residues, which was isolated from the skin secretions of the Chaco tree frog. It shows potent inhibitory activity against both Gram-negative and Gram-positive pathogens and has garnered considerable interest in developing novel classes of natural antibacterial agents. However, as a linear peptide, conformational flexibility and poor proteolytic stability hindered its development as antibacterial agent. To alleviate its susceptibility to proteolytic degradation and improve its antibacterial activity, a series of hydrocarbon-stable analogs of Figainin 2 were synthesized and evaluated for their secondary structure, protease stability, antimicrobial, and hemolytic activities. Among them, F2-12 showed significant improvement in protease resistance and antimicrobial activity compared to that of the template peptide. This study provides a promising strategy for the development of antimicrobial drugs.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Animais , Proteólise , Hemólise/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Estrutura Secundária de Proteína , Bactérias Gram-Negativas/efeitos dos fármacos , Estabilidade Proteica
5.
J Pept Sci ; 30(1): e3533, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37431279

RESUMO

Aurein1.2 is secreted by the Australian tree frog Litoria aurea and is active against a broad range of infectious microbes including bacteria, fungi, and viruses. Its antifungal potency has garnered considerable interest in developing novel classes of natural antifungal agents to fight pathogenic infection by fungi. However, serious pharmacological hurdles remain, hindering its clinical translation. To alleviate its susceptibility to proteolytic degradation and improve its antifungal activity, six conformationally locked peptides were synthesized through hydrocarbon stapling modification and evaluated for their physicochemical and antifungal parameters. Among them, SAU2-4 exhibited significant improvement in helicity levels, protease resistance, and antifungal activity compared to the template linear peptide Aurein1.2. These results confirmed the prominent role of hydrocarbon stapling modification in the manipulation of peptide pharmacological properties and enhanced the application potential of Aurein1.2 in the field of antifungal agent development.


Assuntos
Antifúngicos , Peptídeos , Antifúngicos/farmacologia , Antifúngicos/química , Austrália , Peptídeos/farmacologia , Peptídeos/química , Hidrocarbonetos/química , Bactérias , Testes de Sensibilidade Microbiana
6.
J Pept Sci ; 30(5): e3562, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38148630

RESUMO

The non-POU domain-containing octamer-binding protein (NONO) is a nucleic acid-binding protein with diverse functions that has been identified as a potential cancer target in cell biology studies. Little is known about structural motifs that mediate binding to NONO apart from its ability to form homodimers, as well as heterodimers and oligomers with related homologues. We report a stapling approach to macrocyclise helical peptides derived from the insulin-like growth factor binding protein (IGFBP-3) that NONO interacts with, and also from the dimerisation domain of NONO itself. Using a range of chemistries including Pd-catalysed cross-coupling, cysteine arylation and cysteine alkylation, we successfully improved the helicity and observed modest peptide binding to the NONO dimer, although binding could not be saturated at micromolar concentrations. Unexpectedly, we observed cell permeability and preferential nuclear localisation of various dye-labelled peptides in live confocal microscopy, indicating the potential for developing peptide-based tools to study NONO in a cellular context.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Cisteína , Peptídeos/metabolismo , Permeabilidade
7.
Bioorg Chem ; 145: 107239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428282

RESUMO

Antimicrobial resistance (AMR) is a serious global concern and a huge burden on the healthcare system. Antimicrobial peptides (AMPs) are considered as a solution of AMR due to their membrane-lytic and intracellular mode of action and therefore resistance development against AMPs is less frequent. One such AMPs, temporin-L (TL) is a 13-mer peptide reported as a potent and broad-spectrum antibacterial agent with significant immunomodulatory activity. However, TL is toxic to human erythrocytes at their antibacterial concentrations and therefore various analogues were synthesized with potent antimicrobial activity and lower hemolytic activity. In this work, we have selected a non-toxic engineered analogue of TL (eTL) and performed hydrocarbon stapling of amino acid residues at i to i + 4 positions at different part of sequence. The synthesized peptides were investigated against both the gram-positive and gram-negative bacteria as well as methicillin resistant S. aureus, its MIC was measured in the concentrations range of 0.9-15.2 µM. All analogues were found equal or better antibacterial as compared to parent peptide. Interestingly one analogue eTL [5-9] was found to be non-cytotoxic and stable in presence of the human serum. Mode of action studies revealed membrane depolarizing and disruptive mode of action with live MRSA. Further in vivo studies of antimicrobial against MRSA infection and anti-endotoxin activities in mice model revealed potential activity of the stapled peptide analogue. Overall, this reports on stapled analogue of the AMPs highlights an important strategy for the development of new antibacterial therapeutics against AMR.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeo Hidrolases , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Endopeptidases , Hidrocarbonetos , Testes de Sensibilidade Microbiana
8.
Colorectal Dis ; 26(4): 766-771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302860

RESUMO

AIM: Natural orifice specimen extraction (NOSE) in left-sided colorectal surgery requires application of the circular stapler anvil to the proximal bowel without exteriorization through an additional abdominal incision. We describe an intracorporeal method to secure the stapler anvil, termed the intracorporeal antimesenteric ancillary trocar (IAAT) technique. METHOD: The ancillary trocar is attached to the stapler anvil before introduction into the abdominal cavity through the anal or vaginal orifice. The colon is incised before the trocar spike is brought out through the antimesenteric surface 3-4 cm within the cut edge. A linear stapler is used to seal the bowel end. The ancillary trocar is detached and retrieved via the NOSE conduit. Following the NOSE procedure, a side-to-end colorectal anastomosis is performed with the transanal circular stapler. RESULTS: Ten consecutive patients underwent elective left-sided colorectal resection with IAAT for NOSE (seven transanal, three transvaginal) from January to June 2023. Median age and body mass index were 66 (range 47-74) years and 24.3 (range 17.9-30.8) kg/m2 respectively. Two (20%) patients underwent sigmoid colectomy for sigmoid volvulus while eight (80%) underwent anterior resection for colorectal cancer. Median operating time, operative blood loss and postoperative length of hospital stay were 170 (range 140-240) min, 20 (range 10-40) mL and 1 (range 1-3) day respectively. There were no postoperative complications, readmissions or reoperations. Median follow-up duration was 3 (range 1-6) months. CONCLUSION: The IAAT double-stapling side-to-end anastomotic technique is safe and feasible for patients undergoing left-sided colorectal resection with NOSE, resulting in good outcomes.


Assuntos
Anastomose Cirúrgica , Colectomia , Cirurgia Endoscópica por Orifício Natural , Humanos , Feminino , Pessoa de Meia-Idade , Anastomose Cirúrgica/métodos , Anastomose Cirúrgica/instrumentação , Idoso , Masculino , Cirurgia Endoscópica por Orifício Natural/métodos , Cirurgia Endoscópica por Orifício Natural/instrumentação , Colectomia/métodos , Colectomia/instrumentação , Colo/cirurgia , Instrumentos Cirúrgicos , Vagina/cirurgia , Grampeadores Cirúrgicos , Grampeamento Cirúrgico/métodos , Grampeamento Cirúrgico/instrumentação , Reto/cirurgia , Duração da Cirurgia
9.
Mar Drugs ; 22(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39057423

RESUMO

α-Conotoxins, as selective nAChR antagonists, can be valuable tools for targeted drug delivery and fluorescent labeling, while conotoxin-drug or conotoxin-fluorescent conjugates through the disulfide bond are rarely reported. Herein, we demonstrate the [2,4] disulfide bond of α-conotoxin as a feasible new chemical modification site. In this study, analogs of the α-conotoxin LsIA cysteine[2,4] were synthesized by stapling with five linkers, and their inhibitory activities against human α7 and rat α3ß2 nAChRs were maintained. To further apply this method in targeted delivery, the alkynylbenzyl bromide linker was synthesized and conjugated with Coumarin 120 (AMC) and Camptothecin (CPT) by copper-catalyzed click chemistry, and then stapled between cysteine[2,4] of the LsIA to construct a fluorescent probe and two peptide-drug conjugates. The maximum emission wavelength of the LsIA fluorescent probe was 402.2 nm, which was essentially unchanged compared with AMC. The cytotoxic activity of the LsIA peptide-drug conjugates on human A549 was maintained in vitro. The results demonstrate that the stapling of cysteine[2,4] with alkynylbenzyl bromide is a simple and feasible strategy for the exploitation and utilization of the α-conotoxin LsIA.


Assuntos
Conotoxinas , Cisteína , Humanos , Conotoxinas/química , Conotoxinas/farmacologia , Cisteína/química , Animais , Dissulfetos/química , Células A549 , Sistemas de Liberação de Medicamentos , Ratos , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Corantes Fluorescentes/química , Receptores Nicotínicos/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Química Click
10.
Angew Chem Int Ed Engl ; 63(24): e202402611, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38607929

RESUMO

METTL3, a primary methyltransferase catalyzing the RNA N6-methyladenosine (m6A) modification, has been identified as an oncogene in several cancer types and thus nominated as a potentially effective target for therapeutic inhibition. However, current options using this strategy are limited. In this study, we targeted protein-protein interactions at the METTL3-METTL14 binding interface to inhibit complex formation and subsequent catalysis of the RNA m6A modification. Among candidate peptides, RM3 exhibited the highest anti-cancer potency, inhibiting METTL3 activity while also facilitating its proteasomal degradation. We then designed a stapled peptide inhibitor (RSM3) with enhanced peptide stability and formation of the α-helical secondary structure required for METTL3 interaction. Functional and transcriptomic analysis in vivo indicated that RSM3 induced upregulation of programmed cell death-related genes while inhibiting cancer-promoting signals. Furthermore, tumor growth was significantly suppressed while apoptosis was enhanced upon RSM3 treatment, accompanied by increased METTL3 degradation, and reduced global RNA methylation levels in two in vivo tumor models. This peptide inhibitor thus exploits a mechanism distinct from other small-molecule competitive inhibitors to inhibit oncogenic METTL3 activity. Our findings collectively highlight the potential of targeting METTL3 in cancer therapies through peptide-based inhibition of complex formation and proteolytic degradation.


Assuntos
Antineoplásicos , Metiltransferases , Peptídeos , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos
11.
Angew Chem Int Ed Engl ; 63(16): e202318893, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38376389

RESUMO

α-Ketoaldehydes play versatile roles in the ubiquitous natural processes of protein glycation. However, leveraging the reactivity of α-ketoaldehydes for biomedical applications has been challenging. Previously, the reactivity of α-ketoaldehydes with guanidine has been harnessed to design probes for labeling Arg residues on proteins in an aqueous medium. Herein, a highly effective, broadly applicable, and operationally simple protocol for stapling native peptides by crosslinking two amino groups through diverse imidazolium linkers with various α-ketoaldehyde reagents is described. The use of hexafluoroisopropanol as a solvent facilitates rapid and clean reactions under mild conditions and enables unique selectivity for Lys over Arg. The naturally occurring GOLD/MOLD linkers have been expanded to encompass a wide range of modified glyoxal-lysine dimer (OLD) linkers. In a proof-of-concept trial, these modular stapling reactions enabled a convenient two-round strategy to streamline the structure-activity relationship (SAR) study of the wasp venom peptide anoplin, leading to enhanced biological activities.


Assuntos
Glioxal , Lisina , Glioxal/química , Lisina/química , Aminas , Aldeídos , Peptídeos , Reagentes de Ligações Cruzadas/química
12.
Chembiochem ; 24(5): e202200570, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36567253

RESUMO

The incorporation of photoswitches into the molecular structure of peptides and proteins enables their dynamic photocontrol in complex biological systems. Here, a perfluorinated azobenzene derivative triggered by amber light was site-specifically conjugated to cysteines in a helical peptide by perfluoroarylation chemistry. In response to the photoisomerization (trans→cis) of the conjugated azobenzene with amber light, the secondary structure of the peptide was modulated from a disorganized into an amphiphilic helical structure.


Assuntos
Âmbar , Peptídeos , Peptídeos/química , Proteínas , Estrutura Secundária de Proteína , Compostos Azo/química , Luz
13.
Chembiochem ; 24(13): e202300098, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917494

RESUMO

Over the past decades, several strategies for inducing and stabilizing secondary structure formation in peptides have been developed to increase their proteolytic stability and their binding affinity to specific interaction partners. Here, we report how our recently introduced chemoselective Pd-catalyzed cysteine allylation reaction can be extended to stapling and how the resulting alkene-containing staples themselves can be further modified to introduce additional probes into such stabilized peptides. The latter is demonstrated by introducing a fluorophore as well as a PEG moiety into different stapled peptides using bioorthogonal thiol-ene and Diels-Alder reactions. Furthermore, we investigated structural implications of our allyl staples when used to replace conformationally relevant disulfide bridges. To this end, we chose a selective binder of integrin α3 ß1 (LXY3), which is only active in its cyclic disulfide form. We replaced the disulfide bridge by different stapling reagents in order to increase stability and binding affinity towards integrin α3 ß1 .


Assuntos
Cisteína , Peptídeos , Cisteína/química , Peptídeos/química , Compostos de Sulfidrila/química , Peptídeo Hidrolases , Dissulfetos
14.
J Mol Recognit ; 36(8): e3045, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415317

RESUMO

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine implicated in diverse autoimmune and inflammatory disorders such as psoriasis and Kawasaki disease. Mature IL-17A is a homodimer that binds to the extracellular type-III fibronectin D1:D2-dual domain of its cognate IL-17 receptor A (IL-17RA). In this study, we systematically examined the structural basis, thermodynamics property, and dynamics behavior of IL-17RA/IL-17A interaction and computationally identified two continuous hotspot regions separately from different monomers of IL-17A homodimer that contribute significantly to the interaction, namely I-shaped and U-shaped segments, thus rendered as a peptide-mediated protein-protein interaction (PmPPI). Self-inhibitory peptides (SIPs) are derived from the two segments to disrupt IL-17RA/IL-17A interaction by competitively rebinding to the IL-17A-binding pocket on IL-17RA surface, which, however, only have a weak affinity and low specificity for IL-17RA due to lack of the context support of intact IL-17A protein, thus exhibiting a large flexibility and intrinsic disorder when splitting from the protein context and incurring a considerable entropy penalty when rebinding to IL-17RA. The U-shaped segment is further extended, mutated and stapled by a disulfide bridge across its two strands to obtain a number of double-stranded cyclic SIPs, which are partially ordered and conformationally similar to their native status at IL-17RA/IL-17A complex interface. Experimental fluorescence polarization assays substantiate that the stapling can moderately or considerably improve the binding affinity of U-shaped segment-derived peptides by 2-5-fold. In addition, computational structural modeling also reveals that the stapled peptides can bind in a similar mode with the native crystal conformation of U-shaped segment in IL-17RA pocket, where the disulfide bridge is out of the pocket for avoiding intervene of the peptide binding.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Interleucina-17/química , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Peptídeos/química , Modelos Moleculares , Ligação Proteica
15.
Chemistry ; 29(55): e202301410, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37402229

RESUMO

Polyfluorinated aromatic reagents readily react with thiolates via nucleophilic aromatic substitution (SN Ar) and provide excellent scaffolds for peptide cyclisation. Here we report a robust and versatile platform for peptide stapling and multicyclisation templated by 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, opening the door to the next generation of functional scaffolds for 3D peptide architectures. We demonstrate that stapling and multicyclisation occurs with a range of non-protected peptides under peptide-compatible conditions, exhibiting chemoselectivity and wide-applicability. Peptides containing two cysteine residues are readily stapled, and the remaining perfluoroaryl groups permit the introduction of a second peptide in a modular fashion to access bicyclic peptides. Similarly, peptides with more than two cysteine residues can afford multicyclic products containing up to three peptide 'loops'. Finally, we demonstrate that a porphyrin-templated stapled peptide containing the Skin Penetrating and Cell Entering (SPACE) peptide affords a skin cell penetrating conjugate with intrinsic fluorescence.


Assuntos
Cisteína , Porfirinas , Porfirinas/química , Peptídeos/química , Ciclização
16.
Chemistry ; 29(29): e202203624, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36891840

RESUMO

Peptide stapling represents a versatile strategy to generate peptide derivatives with stable helical structures. While a wide range of skeletons have been investigated for cyclizing the side chains of peptides, the stereochemical outcomes from the linkers remain to be better understood. In this study, we incorporated α-amino acids (α-AAs) as bridges to construct side chain-stapled analogs of an interleukin-17A-binding peptide (HAP) and evaluated the impacts of the staples on the peptide's properties. While all AA-derived peptidyl staples drastically increase the enzymatic stability of HAP, our results indicate that compared to the D-amino acid bridges, the L-AA-based staples may generate more significant impacts in increasing the helicity and enhancing the interleukin-17A(IL-17A)-binding affinity of the modified peptide. Using Rosetta modelling and molecular dynamics (MD) simulations, we demonstrate that the chirality (L/D) possessed within the AAs substantially influences the conformation of stapled HAP peptides, providing either stabilizing or destabilizing effects. Based on the computational model, a modification of the stapled HAP leads to the discovery of a peptide with further enhanced helicity, enzymatic stability and IL-17A-inhibiting ability. This systematic study reveals that chiral AAs can serve as modulatory linkers for optimizing the structures and properties of stapled peptides.


Assuntos
Interleucina-17 , Peptídeos , Peptídeos/química , Aminoácidos , Conformação Molecular , Ligação Proteica
17.
Chemistry ; 29(40): e202301370, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37148504

RESUMO

Stabilization of a peptide conformation via stapling strategy may be realized by the reversible or more often irreversible connection of side chains being in mutually appropriate geometry. An incorporation of phenylboronic acid and sugar residues (fructonic or galacturonic acid), attached to two lysine side chains via amide bonds and separated by 2, 3, or 6 other residues in the C-terminal fragment of RNase A introduces the intramolecular interaction stabilizing the α-helical organization. The boronate ester stapling is stabilized in mild basic conditions and may be switched off by acidification leading to unfolded organization of the peptide chain. We investigated the possibility of using switchable stapling by mass spectrometry, NMR and UV-CD spectroscopies, and DFT calculations.


Assuntos
Peptídeos , Peptídeos/química , Estrutura Secundária de Proteína , Ésteres/química , Modelos Moleculares
18.
Eur Biophys J ; 52(1-2): 17-25, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36547692

RESUMO

Human epidermal growth factor receptor (EGFR) is involved in strong association with malignant proliferation, which has been shown to play a central role in the development and progression of non-small cell lung cancer and other solid tumors. The tumor-suppressor protein MIG6 is a negative regulator of EGFR kinase activity by binding at the activation interface of asymmetric dimer of EGFR kinase domain to disrupt EGFR dimerization and then inactivate the kinase. The protein adopts two discrete fragments 1 and 2 to directly interact with EGFR. It is revealed that the MIG6 fragment 2 is intrinsically disordered in free unbound state, but would fold into a well-structured ß-hairpin when binding to EGFR, thus characterized by a so-called coupled folding-upon-binding process, which can be regarded as a compromise between favorable direct readout and unfavorable indirect readout. Here, a 23-mer F2P peptide was derived from MIG6 fragment 2, trimmed into a 17-mer tF2P peptide that contains the binding hotspot region of the fragment 2, and then constrained with an ordered hairpin conformation in free unbound state by disulfide stapling, finally resulting in a rationally stapled/trimmed stF2P peptide that largely minimizes the unfavorable indirect readout effect upon its binding to EGFR kinase domain, with affinity improved considerably upon the trimming and stapling/trimming. These rationally designed ß-hairpin peptides may be further exploited as potent anti-lung cancer agents to target the activation event of EGFR dimerization.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Peptídeos/química
19.
Bioorg Chem ; 140: 106770, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604094

RESUMO

The identification of novel candidate molecules with the potential to revolutionize the treatment of breast cancer holds profound clinical significance. Macropin (Mac)-1, derived from the venom of wild bees, emerges as an auspicious therapeutic agent for combating breast cancers. Nevertheless, linear peptides have long grappled with the challenges of traversing cell membranes and succumbing to protease hydrolysis. To address this challenge, the present study employed hydrocarbon stapling modification to synthesize a range of stapled Mac-1 peptides, which were comprehensively evaluated for their chemical and biological properties. Significantly, Mac-1-sp4 exhibited a remarkable set of improvements, including enhanced helicity, proteolytic stability, cell membrane permeability, induction of cell apoptosis, in vivo antitumor activity, and inhibition of tubulin polymerization. This study explores the significant impact of the hydrocarbon stapling technique on the secondary structure, hydrolase stability, and biological activity of Mac-1, shedding light on its potential as a revolutionary and potent anti-breast cancer therapy. The findings establish a strong basis for the development of innovative and highly effective anti-tumor treatments.


Assuntos
Neoplasias , Peptídeos , Animais , Abelhas , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeo Hidrolases , Apoptose , Membrana Celular , Hidrocarbonetos
20.
Surg Endosc ; 37(8): 5931-5942, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37076615

RESUMO

BACKGROUND: The transorally inserted anvil (OrVil™) is frequently selected for esophagojejunostomy after laparoscopic total gastrectomy (LTG) because of its versatility. During anastomosis with OrVil™, the double stapling technique (DST) or hemi-double stapling technique (HDST) can be selected by overlapping the linear stapler and the circular stapler. However, no studies have reported the differences between the methods and their clinical significance. METHODS: A randomized controlled clinical trial with a parallel assignment and single-blind outcomes assessment analysis was conducted. Patients with gastric cancer eligible for LTG who met the selection criteria were randomized. Preoperative characteristics and perioperative and postoperative outcomes were compared between the DST and HDST. The primary endpoint was an anastomosis-related complication, and the secondary endpoints were perioperative outcomes and postoperative complications, excluding anastomosis-related complications. RESULTS: Thirty patients with gastric cancer were eligible and randomized. LTG and esophagojejunostomy were successfully performed in all patients, without conversion to laparotomy. Preoperative characteristics, excluding preoperative chemotherapy, were not significantly different between the two groups. One anastomotic leakage of Clavien-Dindo classification grade ≥ IIIa was observed in the DST, although no significant difference was found between the two groups (6.6% vs. 0%, P = 0.30). In the HDST, one case of anastomotic stricture required endoscopic balloon dilation. No significant differences were found in operative time, whereas the anastomosis time was significantly shorter in the HDST than in the DST (47.5 ± 15.8 vs. 38.2 ± 8.8 min, P = 0.028). Except for anastomosis-related complications, postoperative complications (P = 0.282) and postoperative hospital stay for the DST and HDST were not significantly different. CONCLUSIONS: No superiority was found between the DST and HDST with OrVil™ in esophagojejunostomy of LTG for gastric cancer with respect to postoperative complications, whereas the HDST may be preferable in terms of the simplicity of the surgical technique.


Assuntos
Laparoscopia , Neoplasias Gástricas , Humanos , Esôfago/cirurgia , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/complicações , Método Simples-Cego , Grampeamento Cirúrgico/métodos , Laparoscopia/métodos , Anastomose Cirúrgica/métodos , Gastrectomia/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA