Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cancer Cell Int ; 24(1): 110, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528605

RESUMO

BACKGROUND: Resistance to targeted therapies represents a significant hurdle to successfully treating hepatocellular carcinoma (HCC). While epigenetic abnormalities are critical determinants of HCC relapse and therapeutic resistance, the underlying mechanisms are poorly understood. We aimed to address whether and how dysregulated epigenetic regulators have regulatory and functional communications in establishing and maintaining drug resistance. METHODS: HCC-resistant cells were characterized by CCK-8, IncuCyte Live-Cell analysis, flow cytometry and wound-healing assays. Target expression was assessed by qPCR and Western blotting. Global and promoter DNA methylation was measured by dotblotting, methylated-DNA immunoprecipitation and enzymatic digestion. Protein interaction and promoter binding of DNMT3a-TET2 were investigated by co-immunoprecipitation, ChIP-qPCR. The regulatory and functional roles of DNMT3a and TET2 were studied by lentivirus infection and puromycin selection. The association of DNMT and TET expression with drug response and survival of HCC patients was assessed by public datasets, spearman correlation coefficients and online tools. RESULTS: We identified the coordination of DNMT3a and TET2 as an actionable mechanism of drug resistance in HCC. The faster growth and migration of resistant HCC cells were attributed to DNMT3a and TET2 upregulation followed by increased 5mC and 5hmC production. HCC patients with higher DNMT3a and TET2 had a shorter survival time with a less favorable response to sorafenib therapy than those with lower expression. Cancer stem cell-like cells (CSCs) displayed DNMT3a and TET2 overexpression, which were insensitive to sorafenib. Either genetic or pharmacological suppression of DNMT3a or/and TET2 impaired resistant cell growth and oncosphere formation, and restored sorafenib sensitivity. Mechanistically, DNMT3a did not establish a regulatory circuit with TET2, but formed a complex with TET2 and HDAC2. This complex bound the promoters of oncogenes (i.e., CDK1, CCNA2, RASEF), and upregulated them without involving promoter DNA methylation. In contrast, DNMT3a-TET2 crosstalk silences tumor suppressors (i.e., P15, SOCS2) through a corepressor complex with HDAC2 along with increased promoter DNA methylation. CONCLUSIONS: We demonstrate that DNMT3a and TET2 act coordinately to regulate HCC cell fate in DNA methylation-dependent and -independent manners, representing strong predictors for drug resistance and poor prognosis, and thus are promising therapeutic targets for refractory HCC.

2.
Cell Commun Signal ; 22(1): 150, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403678

RESUMO

BACKGROUND: Small extracellular vesicles (EVs), exemplified by exosomes, mediate intercellular communication by transporting proteins, mRNAs, and miRNAs. Post-translational modifications are involved in controlling small EV secretion process. However, whether palmitoylation regulates small EV secretion, remains largely unexplored. METHODS: Vacuole Membrane Protein 1 (VMP1) was testified to be S-palmitoylated by Palmitoylation assays. VMP1 mutant plasmids were constructed to screen out the exact palmitoylation sites. Small EVs were isolated, identified and compared between wild-type VMP1 or mutant VMP1 transfected cells. Electron microscope and immunofluorescence were used to detect multivesicular body (MVB) number and morphology change when VMP1 was mutated. Immunoprecipitation and Mass spectrum were adopted to identify the protein that interacted with palmitoylated VMP1, while knock down experiment was used to explore the function of targeted protein ALIX. Taking human Sertoli cells (SCs) and human spermatogonial stem cell like cells (SSCLCs) as a model of intercellular communication, SSCLC maintenance was detected by flow cytometry and qPCR at 12 days of differentiation. In vivo, mouse model was established by intraperitoneal injection with palmitoylation inhibitor, 2-bromopalmitate (2BP) for 3 months. RESULTS: VMP1 was identified to be palmitoylated at cysteine 263,278 by ZDHHC3. Specifically, palmitoylation of VMP1 regulated its subcellular location and enhanced the amount of small EV secretion. Mutation of VMP1 palmitoylation sites interfered with the morphology and biogenesis of MVBs through suppressing intraluminal vesicle formation. Furthermore, inhibition of VMP1 palmitoylation impeded small EV secretion by affecting the interaction of VMP1 with ALIX, an accessory protein of the ESCRT machinery. Taking SCs and SSCLCs as a model of intercellular communication, we discovered VMP1 palmitoylation in SCs was vital to the growth status of SSCLCs in a co-culture system. Inhibition of VMP1 palmitoylation caused low self-maintenance, increased apoptosis, and decreased proliferation rate of SSCLCs. In vivo, intraperitoneal injection of 2BP inhibited VMP1 palmitoylation and exosomal marker expression in mouse testes, which were closely associated with the level of spermatogenic cell apoptosis and proliferation. CONCLUSIONS: Our study revealed a novel mechanism for small EV secretion regulated by VMP1 palmitoylation in Sertoli cells, and demonstrated its pivotal role in intercellular communication and SSC niche.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Vesículas Extracelulares , Lipoilação , Proteínas de Membrana , Animais , Humanos , Camundongos , Comunicação Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Vacúolos/metabolismo
3.
Exp Cell Res ; 419(1): 113268, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750242

RESUMO

As CDKN2B-AS1 is demonstrated to exert promotive effects on thyroid cancer (TC), this research aims to investigate the role of cancer stem cell-like cells (CSCs)-derived exosomal CDKN2B-AS1 in TC and the underlying regulatory mechanism. Specifically, CDKN2B expression and the correlation of CDKN2B with CDKN2B-AS1 in TC were determined via bioinformatics analysis and further verified by qRT-PCR. After transfection or co-culture with CSCs-derived exosomes, viability, migration, and invasion of TPC-1 and SW579 cells were evaluated by CCK-8, wound healing, and transwell assays, respectively. The uptake of exosomes by TC cells was detected by PKH67 labeling. In vivo tumor formation and metastasis models were established. Tumor volume and weight were calculated. Metastasis loci in lung tissues were observed by hematoxylin-eosin staining. The expression levels of CDKN2B-AS1, CDKN2B, and epithelial-mesenchymal transition- and TGF-ß1/Smad2/3 signaling-related factors were detected by qRT-PCR or Western blot. Concretely, CDKN2B and CDKN2B-AS1 were highly expressed in TC, and there was a positive correlation between the two. In addition, CDKN2B-AS1 promoted the translation and stability of CDKN2B. Furthermore, CDKN2B-AS1 was highly expressed in CSCs and CSCs-derived exosomes which could be absorbed by TC cells. CDKN2B silencing inhibited viability, migration, invasion, protein levels of CDKN2B, N-cadherin and Vimentin, and TGF-ß1/Smad2/3 signaling, while promoting E-cadherin expression in TC cells. CSCs-derived exosomal CDKN2B-AS1 did oppositely and reversed the effects of CDKN2B silencing on TC cells. CDKN2B silencing impeded tumor growth and metastasis in TC mice, while TGF-ß1 performed inversely and impaired the effects of CDKN2B silencing. Collectively, CSCs-derived exosomal CDKN2B-AS1 stabilizes CDKN2B to promote growth and metastasis of TC via TGF-ß1/Smad2/3 signaling.


Assuntos
RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Animais , Caderinas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Camundongos , Células-Tronco Neoplásicas , Fator de Crescimento Transformador beta1
4.
Neuroendocrinology ; 112(9): 917-926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34915523

RESUMO

INTRODUCTION: Insulin-like growth factor type 1 receptor (IGF1R) is overexpressed in various malignant tumors, which relates to their transformation and recurrence. Craniopharyngioma is a benign tumor with malignant results, often accompanied by a severe inflammatory reaction. However, the relationship between IGF1R expression and the inflammatory response of craniopharyngioma is unclear. METHODS: We enrolled 85 patients with adamantinomatous craniopharyngioma (ACP) in a study to explore the relationship between IGF1R expression and clinical features of this disease. RESULTS: Patients in the IGF1R high-expression group had a significantly higher incidence of hypopituitarism, higher recurrence rate, and lower progression-free survival. ß-Catenin can further regulate expression of the stem cell marker, CD44, by regulating IGF1R. Using immunofluorescence, we found that tumor stem cell-like cells did not express phosphorylated (p)-ERK, although p-ERK activation was evident in the surrounding cells. Picropodophyllin, a specific inhibitor of IGF1R, increased the expression of p-ERK protein and decreased the transcription level of interleukin-6. CONCLUSIONS: High expression of IGF1R might promote inflammation of ACP, which might be an unfavorable factor for pituitary function and prognosis. The high expression of IGF1R in tumor stem cell-like cells might inhibit the expression of p-ERK and promote the generation of inflammatory factors. IGF1R plays a stemness maintenance role in ACP and regulates the production of inflammatory factors through a p-ERK pathway, which suggests that targeting IGF1R and p-ERK might provide a new direction for alleviating tumor inflammation.


Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Receptor IGF Tipo 1 , Craniofaringioma/patologia , Humanos , Inflamação/metabolismo , Hipófise/metabolismo , Neoplasias Hipofisárias/patologia , Receptor IGF Tipo 1/metabolismo
5.
Exp Cell Res ; 386(2): 111739, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759055

RESUMO

Chemo-resistance to conventional therapy is a major barrier requiring further investigation in hepatocellular carcinoma (HCC). Cancer stem like cells (CSCs) contribute to the tumorigenicity, progression, and chemo-resistance of malignancies. Studies have implicated the anti-cancer effects of arsenic trioxide (ATO) and have explored the underlying mechanisms. However, whether ATO might reverse chemo-resistance by inhibiting the CSC like properties remains under investigation. Here, we explored the potential of ATO in chemotherapy in constructed multiple drug resistant (MDR) liver cancer cells. ATO re-sensitized the MDR Bel-7402 cells (BelMDR) cells to chemotherapeutic drugs, an effect mediated by the inhibition of NF-κB pathway and CSCs properties. For the molecular mechanisms, via inducing the DNA de-methylation, ATO activated the microRNA-148a (miR-148a), leading to the repression of NF-κB pathway by targeting the 3'-UTR of p65. In summary, epigenetic regulation of miR-148a by ATO is an important mechanism in drug resistance that decreases the expression of NF-κB and hence represses CSC like phenotype. These findings may suggest a novel mechanism for HCC treatment.


Assuntos
Antineoplásicos/farmacologia , Trióxido de Arsênio/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Transcrição RelA/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Fluoruracila/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , MicroRNAs/metabolismo , Células-Tronco Neoplásicas , Oxaliplatina/farmacologia , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
6.
J Cell Physiol ; 235(10): 6794-6807, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31994190

RESUMO

Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells isolated from adipose tissue and have the ability to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Despite their great therapeutic potentials, previous studies showed that ADSCs could enhance the proliferation and metastatic potential of breast cancer cells (BCCs). In this study, we found that ADSCs fused with BCCs spontaneously, while breast cancer stem cell (CSC) markers CD44+ CD24-/low EpCAM+ were enriched in this fusion population. We further assessed the fusion hybrid by multicolor DNA FISH and mouse xenograft assays. Only single nucleus was observed in the fusion hybrid, confirming that it was a synkaryon. In vivo mouse xenograft assay indicated that the tumorigenic potential of the fusion hybrid was significantly higher than that of the parent tumorigenic triple-negative BCC line MDA-MB-231. We had compared the fusion efficiency between two BCC lines, the CD44-rich MDA-MB-231 and the CD44-poor MCF-7, with ADSCs. Interestingly, we found that the fusion efficiency was much higher between MDA-MB-231 and ADSCs, suggesting that a potential mechanism of cell fusion may lie in the dissimilarity between these two cell lines. The cell fusion efficiency was hampered by knocking down the CD44. Altogether, our findings suggest that CD44-mediated cell fusion could be a potential mechanism for generating CSCs.


Assuntos
Tecido Adiposo/patologia , Carcinogênese/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias de Mama Triplo Negativas/patologia , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Animais , Antígeno CD24/metabolismo , Carcinogênese/metabolismo , Diferenciação Celular/fisiologia , Fusão Celular/métodos , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Condrogênese/fisiologia , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Xenoenxertos/metabolismo , Xenoenxertos/patologia , Humanos , Receptores de Hialuronatos/metabolismo , Células MCF-7 , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Osteogênese/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo
7.
Br J Haematol ; 189(6): 1151-1164, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32167591

RESUMO

Multiple myeloma (MM) is characterised by the proliferation and accumulation of malignant plasma cells in the bone marrow. Despite the progress in treatment over the last few years, MM remains incurable and the majority of patients relapse. MM stem-like cells (MMSCs) have been considered as the main reason for drug resistance and eventual relapse. Currently, therapeutic agents are not enough to eradicate MMSCs, and finding effective strategies to eradicate MMSCs may improve the outcome of patients. Here we showed that lycorine, a natural compound from the Amaryllidaceae species, effectively inhibits the proliferation of myeloma cells from cell lines or patients, mainly through decreasing ALDH1+ cells. Mechanistically, lycorine decreases the MMSC population through inhibition of the Wnt/ß-catenin pathway by reducing the ß-catenin protein level. Moreover, lycorine could overcome the increasing proportion of ALDH1+ cells caused by bortezomib (BTZ) treatment, and a combination BTZ and lycorine have a synergistic effect on anti-myeloma cells. Furthermore, we found a similar reduction of MMSC characteristics by lycorine in BTZ-resistant MM cells and primary CD138+ plasma cells. Collectively, our findings indicate lycorine as a promising agent to target MMSCs to overcome the drug resistance of BTZ, and that, alone or in combination with BTZ, lycorine is a potential therapeutic strategy for MM treatments.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Mieloma Múltiplo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas , Fenantridinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
8.
Mol Carcinog ; 57(3): 440-450, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178392

RESUMO

A novel paradigm in tumor biology suggests that gastric cancer progression is driven by gastric cancer stem cell-like cells (GCSCs), but molecular mechanisms regulating tumorigenic and self-renewal potential of GCSCs are still unclear. Here, we aim to investigate biological function of SLC34A2 in regulating sphere formation and tumorigenicity (both are the hallmark of CSCs) of GCSCs and its underlying mechanisms. Our findings testified that CD44+ cells which were derived from fresh primary gastric cancer samples and cell lines displayed stem cell-like features. Significantly, SLC34A2 is increased in CD44+ GCSCs compared with those in adherent counterpart from CD44+ GCSCs. On clinic, SLC34A2 is overexpressed in primary tumor tissues compared with adjacent counterparts. We showed that SLC34A2 regulated sphere formation and self-renewal properties of CD44+ GCSCs in vitro and in vivo. Mechanistic investigations revealed that Gsk3ß was the most strikingly up-regulated gene in response to SLC34A2 knockdown in GCSCs and Wnt/ß-cantenin signaling was required for SLC34A2-mediated sphere formation. Furthermore, SLC34A2 directly binds specific sites in the miR-25 promoter region and that the promoter activity is decreased after the mutation of putative SLC34A2-binding sites, indicating that SLC34A2 is required for the transcriptional induction of miR-25. Meanwhile, luciferase assays showed that miR-25 directly targeted Gsk3ß in CD44+ GCSCs. Overall, our findings define a SLC34A2-miR-25-Gsk3ß pathway in the regulation of GCSCs features and gastric cancer progression, with potential therapeutic applications in blocking their progression.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt
9.
Cancer Cell Int ; 18: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559853

RESUMO

BACKGROUND: The abnormal expression of non-coding RNAs (ncRNAs), such as microRNAs and long ncRNAs, often contribute to the development of cancers. miR-200c functions as a tumour suppressor that impacts the growth of bladder cancer cells and the epithelial-to-mesenchymal transition (EMT). LncRNA X inactive specific transcript (XIST) is highly expressed in tumour tissues, promotes cancer progression and might act as an miRNA molecular sponge. This study aimed to examine the relationship between lncRNA XIST and miR-200c and to assess their functions in the regulation of the stemness properties and tumourigenicity of human bladder cancer stem cell (BCSC)-like cells. METHODS: Biological effects including cell clone formation, sphere formation, self-renewal properties and mouse tumourigenesis were examined in BCSC-like cells with miR-200c overexpression or XIST knockdown. Real-time PCR and western blotting were used to detect the expression changing of related factors in BCSC-like cells gene models. Dual luciferase reporter assay was used to examine the changes of XIST and miR-200c expression levels. RESULTS: The results indicated that miR-200c overexpression and XIST knockdown could inhibit cell clone formation, self-renewal ability and EMT in BCSC-like cells. miR-200c knockdown could restore the tumour growth inhibition caused by XIST knockdown. CONCLUSION: LncRNA XIST may act as an inhibitor of miR-200c to regulate the stemness properties and tumourigenicity of bladder cancer cells, and our findings might reveal a potential strategy of targeting XIST for bladder cancer therapy.

10.
BMC Vet Res ; 14(1): 301, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285832

RESUMO

BACKGROUND: Hemangiosarcoma (HSA) is a malignant tumor derived from endothelial cells which usually shows poor prognosis due to its high invasiveness, metastatic rate and severe hemorrhage from tumor ruptures. Since the pathogenesis of HSA is not yet complete, further understanding of its molecular basis is required. RESULTS: Here, we identified Notch2 signal as a key factor in maintaining canine HSA cancer stem cell (CSC)-like cells. We first cultured HSA cell lines in adherent serum-free condition and confirmed their CSC-like characteristics. Notch signal was upregulated in the CSC-like cells and Notch signal inhibition by a γ-secretase inhibitor significantly repressed their growth. Notch2, a Notch receptor, was highly expressed in the CSC-like cells. Constitutive activation of Notch2 increased clonogenicity and number of cells which were able to survive in serum-free condition. In contrast, inhibition of Notch2 activity showed opposite effects. These results suggest that Notch2 is an important factor for maintaining HSA CSC-like cells. Neoplastic cells in clinical cases also express Notch2 higher than endothelial cells in the normal blood vessels in the same slides. CONCLUSION: This study provides foundation for further stem cell research in HSA and can provide a way to develop effective treatments to CSCs of endothelial tumors.


Assuntos
Hemangiossarcoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor Notch2/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Cães , Hemangiossarcoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor Notch2/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Mol Carcinog ; 56(9): 2022-2034, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28383763

RESUMO

Cisplatin resistance has long been a major problem that restricts its use. A novel paradigm in tumor biology suggests that gastric tumor chemo-resistance is driven by gastric cancer stem cell-like (GCSCs). Growing evidence has indicated that microRNAs (miRNAs) contributes to chemo-resistance in gastric cancer (GC). Here, Lgr5+ cells derived from gastric cancer cell lines displayed stem cell-like features. Flow cytometry demonstrated the presence of a variable fraction of Lgr5 in 19 out of 20 GC specimens. By comparing the miRNA expression profiles of Lgr5+ GCSCs and Lrg5- cells, we established the upregulation of miR-132 in Lgr5+ GCSCs. The enhanced miR-132 expression correlated chemo-resistance in GC patients. Kaplan-Meier survival curve showed that patients with low miR-132 expression survived obviously longer. Functional assays results indicated that miR-132 promoted cisplatin resistance in Lgr5+ GCSCs in vitro and in vivo. Further dual-luciferase reporter gene assays revealed that SIRT1 was the direct target of miR-132. The expression of miR-132 was inversely correlated with SIRT1 in gastric cancer specimens. Furthermore, through PCR array we discovered ABCG2 was one of the downstream targets of SIRT1. Overexpression of SIRT1 down-regulated ABCG2 expression by promoting the de-acetylation of the transcription factor CREB. CREB was further activated ABCG2 via binding to the promoter of ABCG2 to induce transcription. Thus, we concluded that miR-132 regulated SIRT1/CREB/ABCG2 signaling pathway contributing to the cisplatin resistance and might serve as a novel therapeutic target against gastric cancer.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MicroRNAs/genética , Proteínas de Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/genética , Sirtuína 1/metabolismo , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Regulação para Cima
12.
Stem Cells ; 33(6): 2037-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25802118

RESUMO

The neural crest-derived adrenal medulla is closely related to the sympathetic nervous system; however, unlike neural tissue, it is characterized by high plasticity which suggests the involvement of stem cells. Here, we show that a defined pool of glia-like nestin-expressing progenitor cells in the adult adrenal medulla contributes to this plasticity. These glia-like cells have features of adrenomedullary sustentacular cells, are multipotent, and are able to differentiate into chromaffin cells and neurons. The adrenal is central to the body's response to stress making its proper adaptation critical to maintaining homeostasis. Our results from stress experiments in vivo show the activation and differentiation of these progenitors into new chromaffin cells. In summary, we demonstrate the involvement of a new glia-like multipotent stem cell population in adrenal tissue adaptation. Our data also suggest the contribution of stem and progenitor cells in the adaptation of neuroendocrine tissue function in general.


Assuntos
Adaptação Fisiológica , Medula Suprarrenal/citologia , Diferenciação Celular/fisiologia , Células Cromafins/citologia , Células-Tronco Multipotentes/citologia , Neurônios/citologia , Estresse Fisiológico , Animais , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/citologia
13.
Mol Pharm ; 13(3): 1081-8, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26832839

RESUMO

The objective of the present study is to develop a liposomal formulation for delivering anticancer drug to breast cancer stem-cell-like cells, ANV-1, and evaluate its pharmacokinetics in an animal model. The anticancer drug ESC8 was used in dexamethasone (Dex)-associated liposome (DX) to form ESC8-entrapped liposome named DXE. ANV-1 cells showed high-level expression of NRP-1. To enhance tumor regression, we additionally adapted to codeliver the NRP-1 shRNA-encoded plasmid using the established DXE liposome. In vivo efficacy of DXE-NRP-1 was carried out in mice bearing ANV-1 cells as xenograft tumors and the extent of tumor growth inhibition was evaluated by tumor-size measurement. A significant difference in tumor volume started to reveal between DXE-NRP-1 group and DXE-Control group. DXE-NRP-1 group showed ∼4 folds and ∼2.5 folds smaller tumor volume than exhibited by untreated and DXE-Control-treated groups, respectively. DXE disposition was evaluated in Sprague-Dawley rats following an intraperitoneal dose (3.67 mg/kg of ESC8 in DXE). The plasma concentrations of ESC8 in the DXE formulation were measured by liquid chromatography mass spectrometry and pharmacokinetic parameters were determined using a noncompartmental analysis. ESC8 had a half-life of 11.01 ± 0.29 h, clearance of 2.10 ± 3.63 L/kg/h, and volume of distribution of 33.42 ± 0.83 L/kg. This suggests that the DXE liposome formulation could be administered once or twice daily for therapeutic efficacy. In overall, we developed a potent liposomal formulation with favorable pharmacokinetic and tumor regressing profile that could sensitize and kill highly aggressive and drug-resistive cancer stem-cell-like cells.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Lipossomos/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Composição de Medicamentos , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
14.
Int J Cancer ; 137(12): 2815-24, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26088878

RESUMO

Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/fisiologia , Neurotransmissores/sangue , Peptídeos Opioides/sangue , Animais , Carcinoma Pulmonar de Células não Pequenas/psicologia , Linhagem Celular Tumoral , Proliferação de Células , Corticosterona/sangue , Epinefrina/sangue , Epinefrina/farmacologia , Humanos , Neoplasias Pulmonares/psicologia , Masculino , Camundongos Nus , Transplante de Neoplasias , Norepinefrina/sangue , Estresse Psicológico/sangue , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco , Ácido gama-Aminobutírico/sangue
15.
Acta Neuropathol Commun ; 11(1): 110, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420311

RESUMO

Despite tremendous research efforts, successful targeting of aberrant tumor metabolism in clinical practice has remained elusive. Tumor heterogeneity and plasticity may play a role in the clinical failure of metabolism-targeting interventions for treating cancer patients. Moreover, compensatory growth-related processes and adaptive responses exhibited by heterogeneous tumor subpopulations to metabolic inhibitors are poorly understood. Here, by using clinically-relevant patient-derived glioblastoma (GBM) cell models, we explore the cross-talk between glycolysis, autophagy, and senescence in maintaining tumor stemness. We found that stem cell-like GBM tumor subpopulations possessed higher basal levels of glycolytic activity and increased expression of several glycolysis-related enzymes including, GLUT1/SLC2A1, PFKP, ALDOA, GAPDH, ENO1, PKM2, and LDH, compared to their non-stem-like counterparts. Importantly, bioinformatics analysis also revealed that the mRNA expression of glycolytic enzymes positively correlates with stemness markers (CD133/PROM1 and SOX2) in patient GBM tumors. While treatment with glycolysis inhibitors induced senescence in stem cell-like GBM tumor subpopulations, as evidenced by increased ß-galactosidase staining and upregulation of the cell cycle regulators p21Waf1/Cip1/CDKN1A and p16INK4A/CDKN2A, these cells maintained their aggressive stemness features and failed to undergo apoptotic cell death. Using various techniques including autophagy flux and EGFP-MAP1LC3B+ puncta formation analysis, we determined that inhibition of glycolysis led to the induction of autophagy in stem cell-like GBM tumor subpopulations, but not in their non-stem-like counterparts. Similarly, blocking autophagy in stem cell-like GBM tumor subpopulations induced senescence-associated growth arrest without hampering stemness capacity or inducing apoptosis while reciprocally upregulating glycolytic activity. Combinatorial treatment of stem cell-like GBM tumor subpopulations with autophagy and glycolysis inhibitors blocked the induction of senescence while drastically impairing their stemness capacity which drove cells towards apoptotic cell death. These findings identify a novel and complex compensatory interplay between glycolysis, autophagy, and senescence that helps maintain stemness in heterogeneous GBM tumor subpopulations and provides a survival advantage during metabolic stress.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Autofagia , Apoptose , Regulação para Cima , Inibidor p16 de Quinase Dependente de Ciclina/genética , Glicólise , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células , Neoplasias Encefálicas/genética
16.
Cancer Lett ; 554: 216019, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442773

RESUMO

Multiple myeloma (MM) is an incurable condition and the second most common hematological malignancy. Over the past few years, there has been progress in the treatment of MM, but most patients still relapse. Multiple myeloma stem-like cells (MMSCs) are believed to be the main reason for drug resistance and eventual relapse. Currently, there are not enough therapeutic agents that have been identified for eradication of MMSCs, and thus, identification of the same may alleviate the issue of relapse in patients. In the present study, we showed that luteolin (LUT), a natural compound obtained from different plants, such as vegetables, medicinal herbs, and fruits, effectively inhibits the proliferation of MM cells and overcomes bortezomib (BTZ) resistance in them in vitro and in vivo, mainly by decreasing the proportion of ALDH1+ cells. Furthermore, RNA sequencing after LUT treatment of MM cell lines and an MM xenograft mouse model revealed that the effects of the compound are mediated through inhibition of transforming growth factor-ß signaling. Similarly, we found that LUT also significantly reduced the proportion of ALDH1+ cells in primary CD138+ plasma cells. In addition, LUT could overcome the BTZ treatment-induced increase in the proportion of ALDH1+ cells, and the combination of LUT and BTZ had a synergistic effect against myeloma cells. Collectively, our findings suggested that LUT is a promising agent that manifests MMSCs to overcome BTZ resistance, alone or in combination with BTZ, and thus, is a potential therapeutic drug for the treatment of MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Animais , Camundongos , Bortezomib/farmacologia , Mieloma Múltiplo/patologia , Luteolina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Apoptose , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia , Antineoplásicos/farmacologia
17.
Regen Ther ; 22: 19-29, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36582605

RESUMO

Introduction: Here, the discussion focused on the function and possible mechanism of cancer stem cell-like cells (CSCs)-derived exosomal CDKN2B-AS1 in thyroid cancer. Methods: Specifically, the bioinformatics analysis, dual-luciferase reporter assay and RT-qPCR were conducted to obtain the expression and regulation of CDKN2B-AS1, and the downstream miR-122-5p/P4HA1 axis. Exosomes were identified by transmission electron microscopy. The uptake of exosome by recipient cells was observed by PKH67 labeling. Functional experiments and western blot were adopted to detect the effects of exosomal CDKN2B-AS1/miR-122-5p/P4HA1 axis on thyroid cancer cells. Tumor xenograft and in vivo metastasis model combined with RT-qPCR, western blot and hematoxylin-eosin staining verified the role of CDKN2B-AS1. Results: Exosomal CDKN2B-AS1 up-regulated P4HA1 expression through miR-122-5p. CDKN2B-AS1 and P4HA1 expressions were up-regulated, and miR-122-5p expression was down-regulated in thyroid cancer. Silent CDKN2B-AS1 reduced cell viability and stemness. CDKN2B-AS1 was found to be abundant in CSCs and CSCs-derived exosomes. Exosomal CDKN2B-AS1 silencing could transfer to thyroid cancer cells to elevate E-cadherin level, and diminish P4HA1, N-cadherin and Vimentin levels, thus impeding cell migration and invasion. MiR-122-5p inhibitor reversed the function of exosomal CDKN2B-AS1, while P4HA1 silencing attenuated the effect of miR-122-5p inhibitor. Exosomal CDKN2B-AS1 affected the growth and metastasis of thyroid cancer through the miR-122-5p/P4HA1 axis. Conclusion: CSCs-derived exosomal CDKN2B-AS1 acts as an oncogene in thyroid cancer through miR-122-5p/P4HA1 axis.

18.
Data Brief ; 48: 109212, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37213550

RESUMO

Fertilized embryos develop and move freely in the reproductive tract until implantation. Subsequently, the embryos continue to develop after attachment to the uterus. Because of the absence of the uterus, in vitro culturing of embryos is limited to a period of approximately a week. Hatched blastocysts were seeded on feeder cells to extend the culture period. We cultured the colonies formed from the blastocysts for an additional 14 days. From the colonies, four types of cells were established, and each type was isolated to extract RNA. RNA sequencing was conducted using NovaSeq6000. Sequencing reads were aligned to genes and transcripts. Raw data from our previous study were used to compare these samples with the cultured cell lines. We analyzed differentially expressed genes and Gene Ontology terms between new samples and cultured cell lines. Our data can provide essential information for extending the period of embryo culture in vitro.

19.
Cell Rep ; 42(4): 112403, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37060562

RESUMO

N6-methyladenosine (m6A) modification controls cell fate determination. Here, we show that liquid-liquid phase separation (LLPS) of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a pivotal m6A "reader" protein, promotes the transdifferentiation of spermatogonial stem cells (SSCs) into neural stem cell-like cells by activating the IκB-nuclear factor κB (NF-κB)-CCND1 axis. The inhibition of IκBα/ß mRNA translation mediated by YTHDF1 LLPS is the key to the activation of the IκB-NF-κB-CCND1 axis. Disrupting either YTHDF1 LLPS or NF-κB activation inhibits transdifferentiation efficiency. Moreover, overexpression of the YTH domain of YTHDF1 inhibits the activation of the IκB-NF-κB-CCND1 axis by promoting IκBα/ß mRNA translation. Overexpression of the tau-YTH fusion protein reactivates IκB-NF-κB-CCND1 axis by inhibiting the translation of IκBα/ß mRNAs, and tau LLPS is observed, which can restore transdifferentiation efficiency. Our findings demonstrate that the protein-RNA LLPS plays essential roles in cell fate transition and provide insights into translational medicine and the therapy of neurological diseases.


Assuntos
Proteínas I-kappa B , NF-kappa B , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Proteínas I-kappa B/metabolismo , Células-Tronco/metabolismo
20.
Int J Med Sci ; 9(7): 592-602, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028242

RESUMO

OBJECTIVES: Stem cell transplantation has been reported to rescue ovarian function in a preclinical mouse model of chemotherapy-induced premature ovarian failure (POF); however, maintaining the survival and self-renewal of transplanted seed cells in ovarian tissues over the long-term remains a troublesome issue. In this study we aimed to determine whether the CD44+/CD105+ human amniotic fluid cell (HuAFCs) subpopulation represent potential seed cells for stem cell transplantation treatments in POF. MATERIALS AND METHODS: The CD44+/CD105+ subpopulation were isolated from HuAFCs, cultured in vitro, and injected into a cyclophosphamide-induced mouse model of POF. RESULTS: Under continuous subculture in vitro, CD44+/CD105+ cells proliferated rapidly and expressed high levels of the proliferative markers Ki67 and survivin, as well as high levels of a number of mesenchymal stem cell biomarkers. Moreover, when red fluorescence protein (RFP)-transduced CD44+/CD105+ HuAFCs were transplanted into the ovaries of POF mice, the cells could be detected by fluorescence microscopy up to three weeks after injection. Furthermore, the BrdUrd incorporation assay and immunofluorescent staining demonstrated that CD44+/CD105+ HuAFCs underwent normal cycles of cell proliferation and self-renewal in the ovarian tissues of POF mice over the long-term. CONCLUSIONS: The mesenchymal stem cell properties and long-term in vivo survival of CD44+/CD105+ HuAFCs make them ideal seed cells for stem cell transplantation to treat POF.


Assuntos
Líquido Amniótico/imunologia , Antígenos CD/imunologia , Antineoplásicos/efeitos adversos , Ciclofosfamida/efeitos adversos , Receptores de Hialuronatos/imunologia , Células-Tronco Mesenquimais/patologia , Insuficiência Ovariana Primária/induzido quimicamente , Receptores de Superfície Celular/imunologia , Animais , Sequência de Bases , Separação Celular , Primers do DNA , Modelos Animais de Doenças , Endoglina , Feminino , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária/patologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA