Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Magn Reson Med ; 78(3): 860-870, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27690262

RESUMO

PURPOSE: Osteoporosis is characterized by a decrease in bone mineral density (BMD). A preliminary stage of the disease is progressive bone marrow adiposity, caused by imbalance between osteogenesis and adipogenesis in the marrow. Detection of osteoporosis relies on the quantification of BMD with techniques such as dual-energy X-ray absorptiometry. This work aimed to detect bone marrow changes in an experimental model of osteopenia using a low-field tabletop NMR scanner. METHODS: An experiment was performed on 32 female rats, 3 months old, 16 of which were ovariectomized (OVX) and 16 were sham-operated (sham). The femur and tibia from both hind limbs were isolated and underwent ex vivo NMR scans at four time points after the OVX and sham operations. NMR scans were complemented by BMD measurements and histology. RESULTS: Significant changes in the bone marrow of ovariectomized rats, relative to sham operated rats, were observed after 3.5 and 4.5 months. Bone marrow adiposity was detected by significant changes in T1 and T2 relaxation times, and in the diffusion coefficient. CONCLUSIONS: This study suggests a potential detection of changes to the bone marrow using a tabletop NMR device. Clinical translation may facilitate screening, early detection of bone weakening as a result of estrogen withdrawal, and monitoring of treatment efficacy. Magn Reson Med 78:860-870, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Medula Óssea/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Osteoporose/diagnóstico por imagem , Animais , Densidade Óssea , Medula Óssea/química , Feminino , Fêmur/diagnóstico por imagem , Ovariectomia , Ratos , Ratos Sprague-Dawley , Tíbia/diagnóstico por imagem
2.
Adv Mater ; 36(24): e2313411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469974

RESUMO

Precise manipulation of van der Waals forces within 2D atomic layers allows for exact control over electron-phonon coupling, leading to the exceptional quantum properties. However, applying this technique to diverse structures such as 3D materials is challenging. Therefore, investigating new hierarchical structures and different interlayer forces is crucial for overcoming these limitations and discovering novel physical properties. In this work, a multishelled ferromagnetic material with controllable shell numbers is developed. By strategically regulating the magnetic interactions between these shells, the magnetic properties of each shell are fine-tuned. This approach reveals distinctive magnetic characteristics including regulated magnetic domain configurations and enhanced effective fields. The nanoscale magnetic interactions between the shells are observed and analyzed, which shed light on the modified magnetic properties of each shell, enhancing the understanding and control of ferromagnetic materials. The distinctive magnetic interaction significantly boosts electromagnetic absorption at low-frequency frequencies used by fifth-generation wireless devices, outperforming ferromagnetic materials without multilayer structures by several folds. The application of magnetic interactions in materials science reveals thrilling prospects for technological and electronic innovation.

3.
Heart Rhythm ; 19(3): 372-380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767986

RESUMO

BACKGROUND: Recent case reports and small studies have reported activation of the magnet-sensitive switches in cardiovascular implantable electronic devices (CIEDs) by the new iPhone 12 series, initiating asynchronous pacing in pacemakers and suspension of antitachycardia therapies in implantable cardioverter-defibrillators (ICDs). OBJECTIVE: The purpose of this prospective single-center observational study was to quantify the risk of magnetic field interactions of the iPhone 12 with CIEDs. METHODS: A representative model of each CIED series from all manufacturers was tested ex vivo. Incidence and minimum distance necessary for magnet mode triggering were analyzed in 164 CIED patients with either the front or the back of the phone facing the device. The magnetic field of the iPhone 12 was analyzed using a 3-axis Hall probe. RESULTS: Ex vivo, magnetic interference occurred in 84.6% with the back compared to 46.2% with the front of the iPhone 12 facing the CIED. In vivo, activation of the magnet-sensitive switch occurred in 30 CIED patients (18.3%; 21 pacemaker, 9 ICD) when the iPhone 12 was placed in close proximity over the CIED pocket and the back of the phone was facing the skin. Multiple binary logistic regression analysis identified implantation depth (95% confidence interval 0.02-0.24) as an independent predictor of magnet-sensitive switch activation. CONCLUSION: Magnetic field interactions occur only in close proximity and with precise alignment of the iPhone 12 and CIEDs. It is important to advise CIED patients to not put the iPhone 12 directly on the skin above the CIED. Further recommendations are not necessary.


Assuntos
Desfibriladores Implantáveis , Marca-Passo Artificial , Desfibriladores Implantáveis/efeitos adversos , Eletrônica , Humanos , Campos Magnéticos , Imãs , Marca-Passo Artificial/efeitos adversos , Estudos Prospectivos
4.
J Phys Condens Matter ; 33(44)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34348249

RESUMO

We investigate the magnetic properties of a chemically heterogeneous binary-main-phase (BMP) Nd-Ce-Fe-B magnet with a core-shell structure via micromagnetic simulation. It is found that the coercivity strongly depends on the shell thickness. The BMP magnet's coercivity initially increases and then decreases with increasing Nd-rich shell thickness, and so there is the optimal shell thickness which shows the maximum coercivity for any given Ce concentration. The simulation shows the significant difference in coercivity and maximum energy product between the BMP and single-main-phase magnets. Notably, the magnetization reversal mechanism of the BMP magnet is revealed in the simulation. Local reversals in the BMP magnet first occur in the Ce-rich shells, followed by the Nd-rich cores. Then, the magnetization in Ce-rich core/Nd-rich shell typed grains is switched after reversed magnetization of all the Nd-rich core/Ce-rich shell typed grains. The BMP magnet represents a further increased coercivity for a larger GB thickness, which can be well explained by a maximum stray field.

5.
ACS Appl Mater Interfaces ; 13(17): 20288-20295, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885300

RESUMO

The ability to control and tune magnetic dissipation is a key concept of emergent spintronic technologies. Magnon scattering processes constitute a major dissipation channel in nanomagnets, redefine their response to spin torque, and hold the promise for manipulating magnetic states on the quantum level. Controlling these processes in nanomagnets, while being imperative for spintronic applications, has remained difficult to achieve. Here, we propose an approach for controlling magnon scattering by a switch that generates nonuniform magnetic field at nanoscale. We provide an experimental demonstration in magnetic tunnel junction nanodevices, consisting of a free layer and a synthetic antiferromagnet. By triggering the spin-flop transition in the synthetic antiferromagnet and utilizing its stray field, magnon interaction in the free layer is toggled. The results open up avenues for tuning nonlinearities in magnetic neuromorphic applications and for engineering coherent magnon coupling in hybrid quantum information technologies.

6.
Magn Reson Imaging ; 56: 119-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30243579

RESUMO

Low-field nuclear magnetic resonance (NMR) based on permanent magnet technologies is currently experiencing a considerable growth of popularity in studying polymer materials. Various bulk properties can be probed with compact NMR tabletop instruments by placing the sample of interest inside the magnet. Contrary to this, compact NMR sensors with open geometries give access to depth-dependent properties of polymer samples and objects of different sizes and shapes truly non-destructively by performing measurements in the inhomogeneous stray-field outside the magnet system. Some of the sensors are also portable being thus well suited for onsite measurements. The gain of both bulk and depth-dependent microscopic properties are important for establishing improved structure-property relationships needed for the rational design of new polymer formulations. Selected recent applications will be presented to illustrate this potential of compact NMR.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Polímeros/química , Cristalização , Desenho de Equipamento , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Polimetil Metacrilato/química , Poliestirenos/química , Cloreto de Polivinila/química
7.
J Magn Reson ; 307: 106566, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31454699

RESUMO

Magnetic resonance microscopy (MRM) is a valuable tool for spatially resolved studies. While it is desirable to address voxels in the general case, it is sufficient to resolve slices of the sample in many cases of practical importance, e.g., for layered structures or at planar surfaces. We demonstrate that use of high static field gradients of 73 T/m in combination with a specially designed probe head enable MRM with an ultrahigh resolution of ∼2 µm in one dimension. The key feature of the built probe head is a precise computer controlled adjustment of the sample position and orientation, which allows for an accurate alignment of the samples with respect to the gradient of the magnetic field. Since slice-wise scanning of extended samples with this high spatial resolution is time-consuming, we introduce a methodology to reduce the experimental time significantly. Unlike the usual approach, which involves elaborate hardware and software correction, experimental imperfections are removed by stepwise moving the sample in our case. We demonstrate the capabilities of high-resolution 1D MRM for a solid sample with a layered structure and a liquid droplet on a planar solid substrate.

8.
ACS Appl Mater Interfaces ; 10(19): 16887-16892, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29682962

RESUMO

In this work, we demonstrate that skyrmions can be nucleated in the free layer of a magnetic tunnel junction (MTJ) with Dzyaloshinskii-Moriya interactions (DMIs) by a spin-polarized current with the assistance of stray fields from the pinned layer. The size, stability, and number of created skyrmions can be tuned by either the DMI strength or the stray field distribution. The interaction between the stray field and the DMI effective field is discussed. A device with multilevel tunneling magnetoresistance is proposed, which could pave the ways for skyrmion-MTJ-based multibit storage and artificial neural network computation. Our results may facilitate the efficient nucleation and electrical detection of skyrmions.

9.
J Magn Reson ; 277: 25-29, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28213048

RESUMO

Many single-sided permanent magnet NMR systems have been proposed over the years allowing for 1D proton-density profiling, diffusion measurements and relaxometry. In this manuscript we make use of a recently published unilateral magnet for low-field NMR exhibiting an extremely uniform magnetic field gradient with moderate strength and cylindrical symmetry, allowing for a well-defined sweet spot. Combined with a goniometer, our system is used to characterize precisely the uniformity of its gradient and to achieve micrometric precision 1D profiling, as well as spatially localized relaxometry and diffusometry on thick (∼150µm) membrane samples. Profiling with this magnet did not require repositioning of the samples with respect to the 1D tomograph.

10.
J Colloid Interface Sci ; 476: 20-28, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27179175

RESUMO

The technique of stray field diffusion NMR is adapted to study the diffusion properties of water in monodisperse wet foams. We show for the first time, that the technique is capable of observing q-space diffusion diffraction peaks in monodisperse aqueous foams with initial bubble sizes in the range of 50-85µm. The position of the peak maximum can be correlated simply to the bubble size in the foam leading to a technique that can investigate the stability of the foam over time. The diffusion technique, together with supplementary spin-spin relaxation analysis of the diffusion data is used to follow the stability and coarsening behaviour of monodisperse foams with a water fraction range between 0.24 and 0.33. The monodisperse foams remain stable for a period of hours in terms of the initial bubble size. The duration of this stable period correlates to the initial size of the bubbles. Eventually the bubbles begin to coarsen and this is observed in changes in the position of the diffusion diffraction maxima.

11.
J Magn Reson ; 248: 1-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282441

RESUMO

An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/instrumentação , Técnicas de Imagem por Elasticidade/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Espectroscopia de Ressonância Magnética/métodos , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vibração
12.
J Magn Reson ; 245: 87-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25023564

RESUMO

Unilateral NMR devices are valuable tools used to study non-invasively arbitrarily-sized objects. They have been utilized in various applications, including non-destructive testing and well logging. However, measurements with such scanners are characterized by a low sensitivity, which is mainly the result of the low and inhomogeneous magnetic field B0. The resulting poor signal to noise ratio (SNR) is a prominent limitation, as it deteriorates the accuracy of data analysis. Improving the SNR is typically done by the use of averaging repetitions that result in too long scan times. This work presents a statistical signal-processing method that can improve the sensitivity of a Carr-Purcell-Meiboom-Gill (CPMG)-like sequence for measurements of transverse-relaxation with unilateral scanners. The method improves the extraction of the decay curve from the noisy data. This is done by exploiting the redundancy in the acquired signal and by the use of the noise characteristics, which are both incorporated into a weighted least-squares estimation approach. This technique is especially effective in applications where RF shielding is not in use, and the measurements are corrupted by dominant non-white noise. The method performance was evaluated with a series of CPMG-like measurements applied on two samples. Decay curves were extracted from each measurement with the proposed method and were compared to a conventional extraction of the decay curve. All measurements showed a significant improvement in the accuracy of estimation of the decaying signal. Thus, the improvement in the sensitivity can be translated into a reduction in the acquisition times (by reducing the need in averaging repetitions) or to a more accurate fitting process of the traverse relaxation distribution.

13.
J Comput Phys ; 231(7): 2840-2850, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24910469

RESUMO

A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with N4/3 for N computational cells used and with N2/3 (sublinear) when magnetization is given in canonical tensor format. In the final section we confirm our theoretical results concerning computing times and accuracy by means of numerical examples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA