Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Am J Hum Genet ; 109(6): 1077-1091, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35580588

RESUMO

Hearing loss is one of the top contributors to years lived with disability and is a risk factor for dementia. Molecular evidence on the cellular origins of hearing loss in humans is growing. Here, we performed a genome-wide association meta-analysis of clinically diagnosed and self-reported hearing impairment on 723,266 individuals and identified 48 significant loci, 10 of which are novel. A large proportion of associations comprised missense variants, half of which lie within known familial hearing loss loci. We used single-cell RNA-sequencing data from mouse cochlea and brain and mapped common-variant genomic results to spindle, root, and basal cells from the stria vascularis, a structure in the cochlea necessary for normal hearing. Our findings indicate the importance of the stria vascularis in the mechanism of hearing impairment, providing future paths for developing targets for therapeutic intervention in hearing loss.


Assuntos
Surdez , Perda Auditiva , Animais , Cóclea , Estudo de Associação Genômica Ampla , Perda Auditiva/genética , Humanos , Camundongos , Estria Vascular
2.
J Neurosci ; 43(27): 5057-5075, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37268417

RESUMO

Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.


Assuntos
Surdez , Presbiacusia , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Animais , Camundongos , Idoso , Estria Vascular/patologia , Qualidade de Vida , Cóclea/metabolismo , Presbiacusia/patologia , Surdez/patologia , Macrófagos , Inflamação/metabolismo
3.
BMC Genomics ; 25(1): 213, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413848

RESUMO

BACKGROUND: The stria vascularis (SV), located in the lateral wall of the cochlea, maintains cochlear fluid homeostasis and mechanoelectrical transduction (MET) activity required for sound wave conduction. The pathogenesis of a number of human inheritable deafness syndromes, age related hearing loss, drug-induced ototoxicity and noise-induced hearing loss results from the morphological changes and functional impairments in the development of the SV. In this study, we investigate the implications of intercellular communication within the SV in the pathogenesis of sensorineural hearing loss (SNHL). We aim to identify commonly regulated signaling pathways using publicly available single-cell transcriptomic sequencing (scRNA-seq) datasets. METHODS: We analyzed scRNA-seq data, which was derived from studying the cochlear SV in mice with SNHL compared to normal adult mice. After quality control and filtering, we obtained the major cellular components of the mouse cochlear SV and integrated the data. Using Seurat's FindAllMarkers and FindMarkers packages, we searched for novel conservative genes and differential genes. We employed KEGG and GSEA to identify molecular pathways that are commonly altered among different types of SNHL. We utilized pySCENIC to discover new specific regulatory factors in SV subpopulation cells. With the help of CellChat, we identified changes in subpopulation cells showing similar trends across different SNHL types and their alterations in intercellular communication pathways. RESULTS: Through the analysis of the integrated data, we discovered new conserved genes to SV specific cells and identified common downregulated pathways in three types of SNHL. The enriched genes for these pathways showing similar trends are primarily associated with the Electron Transport Chain, related to mitochondrial energy metabolism. Using the CellChat package, we further found that there are shared pathways in the incoming signaling of specific intermediate cells in SNHL, and these pathways have common upstream regulatory transcription factor of Nfe2l2. Combining the results from pySCENIC and CellChat, we predicted the transcription factor Nfe2l2 as an upstream regulatory factor for multiple shared cellular pathways in IC. Additionally, it serves as an upstream factor for several genes within the Electron Transport Chain. CONCLUSION: Our bioinformatics analysis has revealed that downregulation of the mitochondrial electron transport chain have been observed in various conditions of SNHL. E2f1, Esrrb, Runx1, Yy1, and Gata2 could serve as novel important common TFs regulating the electron transport chain. Adm has emerged as a potential new marker gene for intermediate cells, while Itgb5 and Tesc show promise as potential new marker genes for marginal cells in the SV. These findings offer a new perspective on SV lesions in SNHL and provide additional theoretical evidence for the same drug treatment and prevention of different pathologies of SNHL.


Assuntos
Perda Auditiva Neurossensorial , Estria Vascular , Adulto , Humanos , Animais , Camundongos , Estria Vascular/metabolismo , Estria Vascular/patologia , Análise da Expressão Gênica de Célula Única , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Cóclea , Fatores de Transcrição/metabolismo
4.
J Pathol ; 260(3): 353-364, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37256677

RESUMO

Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Orelha Interna , Nefrite Hereditária , Animais , Camundongos , Nefrite Hereditária/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/uso terapêutico , Membrana Basal Glomerular/metabolismo , Colágeno Tipo IV/genética , Orelha Interna/metabolismo , Orelha Interna/patologia , Endotelinas/metabolismo , Endotelinas/uso terapêutico
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583993

RESUMO

Dysregulation of ion and potential homeostasis in the scala media is the most prevalent cause of hearing loss in mammals. However, it is not well understood how the development and function of the stria vascularis regulates this fluid homeostasis in the scala media. From a mouse genetic screen, we characterize a mouse line, named 299, that displays profound hearing impairment. Histology suggests that 299 mutant mice carry a severe, congenital structural defect of the stria vascularis. The in vivo recording of 299 mice using double-barreled electrodes shows that endocochlear potential is abolished and potassium concentration is reduced to ∼20 mM in the scala media, a stark contrast to the +80 mV endocochlear potential and the 150 mM potassium concentration present in healthy control mice. Genomic analysis revealed a roughly 7-kb-long, interspersed nuclear element (LINE-1 or L1) retrotransposon insertion on chromosome 11. Strikingly, the deletion of this L1 retrotransposon insertion from chromosome 11 restored the hearing of 299 mutant mice. In summary, we characterize a mouse model that enables the study of stria vascularis development and fluid homeostasis in the scala media.


Assuntos
Surdez/genética , Retroelementos/genética , Estria Vascular/fisiologia , Animais , Cromossomos de Mamíferos/genética , Surdez/metabolismo , Surdez/fisiopatologia , Modelos Animais de Doenças , Feminino , Células Ciliadas Auditivas/fisiologia , Audição/genética , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Homeostase/genética , Homeostase/fisiologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Potássio/metabolismo , Gravidez
6.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791427

RESUMO

Age-related hearing loss (HL), or presbycusis, is a complex and heterogeneous condition, affecting a significant portion of older adults and involving various interacting mechanisms. Metabolic presbycusis, a type of age-related HL, is characterized by the dysfunction of the stria vascularis, which is crucial for maintaining the endocochlear potential necessary for hearing. Although attention on metabolic presbycusis has waned in recent years, research continues to identify strial pathology as a key factor in age-related HL. This narrative review integrates past and recent research, bridging findings from animal models and human studies, to examine the contributions of the stria vascularis to age-related HL. It provides a brief overview of the structure and function of the stria vascularis and then examines mechanisms contributing to age-related strial dysfunction, including altered ion transport, changes in pigmentation, inflammatory responses, and vascular atrophy. Importantly, this review outlines the contribution of metabolic mechanisms to age-related HL, highlighting areas for future research. It emphasizes the complex interdependence of metabolic and sensorineural mechanisms in the pathology of age-related HL and highlights the importance of animal models in understanding the underlying mechanisms. The comprehensive and mechanistic investigation of all factors contributing to age-related HL, including cochlear metabolic dysfunction, remains crucial to identifying the underlying mechanisms and developing personalized, protective, and restorative treatments.


Assuntos
Envelhecimento , Presbiacusia , Estria Vascular , Humanos , Estria Vascular/metabolismo , Estria Vascular/patologia , Animais , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Cóclea/metabolismo , Cóclea/patologia , Perda Auditiva/metabolismo , Perda Auditiva/patologia
7.
Clin Genet ; 103(6): 699-703, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807241

RESUMO

Hereditary deafness and retinal dystrophy are each genetically heterogenous and clinically variable. Three small unrelated families segregating the combination of deafness and retinal dystrophy were studied by exome sequencing (ES). The proband of Family 1 was found to be compound heterozygous for NM_004525.3: LRP2: c.5005A > G, p.(Asn1669Asp) and c.149C > G, p.(Thr50Ser). In Family 2, two sisters were found to be compound heterozygous for LRP2 variants, p.(Tyr3933Cys) and an experimentally confirmed c.7715 + 3A > T consensus splice-altering variant. In Family 3, the proband is compound heterozygous for a consensus donor splice site variant LRP2: c.8452_8452 + 1del and p.(Cys3150Tyr). In mouse cochlea, Lrp2 is expressed abundantly in the stria vascularis marginal cells demonstrated by smFISH, single-cell and single-nucleus RNAseq, suggesting that a deficiency of LRP2 may compromise the endocochlear potential, which is required for hearing. LRP2 variants have been associated with Donnai-Barrow syndrome and other multisystem pleiotropic phenotypes different from the phenotypes of the four cases reported herein. Our data expand the phenotypic spectrum associated with pathogenic variants in LRP2 warranting their consideration in individuals with a combination of hereditary hearing loss and retinal dystrophy.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Miopia , Distrofias Retinianas , Animais , Camundongos , Humanos , Perda Auditiva Neurossensorial/genética , Surdez/genética , Miopia/genética , Mutação , Linhagem , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
8.
J Neurosci ; 41(34): 7171-7181, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34253626

RESUMO

Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult CNS results in region-specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiologic analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis.SIGNIFICANCE STATEMENT Mutations in Mediator protein complex subunit 12 (Med12) are associated with X-linked intellectual disability syndromes and hearing loss. Using temporal-conditional genetic approaches in CNS glia, we found that loss of Med12 results in severe hearing loss in adult animals through rapid degeneration of the stria vascularis. Our study describes the first animal model that recapitulates hearing loss identified in Med12-related disorders and provides a new system in which to examine the underlying cellular and molecular mechanisms of Med12 function in the adult nervous system.


Assuntos
Astrócitos/fisiologia , Perda Auditiva Neurossensorial/etiologia , Complexo Mediador/deficiência , Estria Vascular/patologia , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Moléculas de Adesão Celular/metabolismo , Condicionamento Clássico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Medo , Feminino , Reação de Congelamento Cataléptica , Técnicas de Inativação de Genes , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Masculino , Complexo Mediador/fisiologia , Camundongos , Especificidade de Órgãos , Emissões Otoacústicas Espontâneas , Distribuição Aleatória , Reflexo de Sobressalto
9.
Am J Otolaryngol ; 43(2): 103383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35124403

RESUMO

PURPOSE: Microvascular involvement in patients with diabetes mellitus is one of the causes of retinopathy, nephropathy, and neuropathy. The same pathologic processes may occur in the inner ear structures. This case-control study aimed to evaluate the hearing thresholds in type 2 diabetic patients with different severity of diabetic retinopathy (DR) and to compare these findings with controls. MATERIALS AND METHODS: We evaluated the hearing threshold in four groups of eligible subjects aged 20-70 years. These groups were controls, diabetic patients with no-DR, with mild-moderate non-proliferative DR (NPDR), and with severe NPDR/proliferative DR (PDR). Each group consisted of 105 subjects. Speech-frequency and high-frequency hearing levels (SFHL and HFHL, respectively) were measured and log-transformed. Analysis of covariance was used. The prevalence rate of moderate or more hearing loss in the groups was estimated. RESULTS: In total, 194 men and 226 women participated. The ratio of means of SFHL and HFHL between PDR and controls was 0.18 and 0.20, respectively. Hearing loss was prevalent in severe NPDR/PDR (adjusted prevalence ratio 3.36 for SFHL and 1.51 for HFHL) compared to controls. Also, the prevalence of high-frequency hearing loss was more in mild-moderate NPDR (adjusted prevalence ratio 1.33). CONCLUSIONS: The magnitude of the increase in hearing impairment prevalence between the severe NPDR/PDR patients and controls was about 24% for both SFHL and HFHL. We recommend hearing assessment in the screening of the DR patients.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Perda Auditiva , Adulto , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/etiologia , Feminino , Perda Auditiva/epidemiologia , Perda Auditiva/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
10.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555432

RESUMO

The stria vascularis (SV) contributes to cochlear homeostasis and consists of three layers, one of which contains the blood-labyrinthic barrier (BLB), with a large number of bovine cochlear pericytes (BCPs). Cisplatin is a chemotherapeutic drug that can damage the SV and cause hearing loss. In this study, cell viability, proliferation rate, cytotoxicity and reactive oxygen species production were evaluated. The protein content of phospho-extracellular signal-regulated kinases (ERK) 1/2, total ERK 1/2, phospho-cytosolic phospholipase A2 (cPLA2), total cPLA2 and cyclooxygenase 2 (COX-2) and the release of prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) from BCPs were analyzed. Finally, the protective effect of platelet-derived growth factor (PDGF-BB) on BCPs treated with cisplatin was investigated. Cisplatin reduced viability and proliferation, activated ERK 1/2, cPLA2 and COX-2 expression and increased PGE2 and VEGF release; these effects were reversed by Dexamethasone. The presence of PDGF-BB during the treatment with cisplatin significantly increased the proliferation rate. No studies on cell regeneration in ear tissue evaluated the effect of the PDGF/Dex combination. The aim of this study was to investigate the effects of cisplatin on cochlear pericytes and propose new otoprotective agents aimed at preventing the reduction of their vitality and thus maintaining the BLB structure.


Assuntos
Pericitos , Estria Vascular , Animais , Bovinos , Estria Vascular/metabolismo , Cisplatino/toxicidade , Cisplatino/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Becaplermina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo
11.
J Neurosci ; 40(15): 2976-2992, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32152201

RESUMO

Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39 However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.


Assuntos
Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Perda Auditiva Neurossensorial/genética , Fator de Crescimento de Hepatócito/genética , Crista Neural/crescimento & desenvolvimento , Estria Vascular/patologia , Animais , Contagem de Células , Orelha Interna/anormalidades , Feminino , Células Ciliadas Auditivas , Perda Auditiva Neurossensorial/patologia , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural/patologia , Sondas RNA
12.
Dev Biol ; 457(1): 91-103, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550482

RESUMO

Little is known about the role of TBX1 in post-otocyst stages of inner ear development. Here, we report on mice with a missense mutation of Tbx1 that are viable with fully developed but abnormally formed inner ears. Mutant mice are deaf due to an undeveloped stria vascularis and show vestibular dysfunction associated with abnormal semicircular canal formation. We show that TBX1 is expressed in endolymph-producing strial marginal cells and vestibular dark cells of the inner ear and is an upstream regulator of Esrrb, which previously was shown to control the developmental fate of these cells. We also show that TBX1 is expressed in sensory cells of the crista ampullaris, which may relate to the semicircular canal abnormalities observed in mutant mice. Inner ears of mutant embryos have a non-resorbed fusion plate in the posterior semicircular canal and a single ampulla connecting anterior and lateral canals. We hypothesize that the TBX1 missense mutation prevents binding with specific co-regulatory proteins. These findings reveal previously unknown functions of TBX1 during later stages of inner ear development.


Assuntos
Orelha Interna/embriologia , Mutação de Sentido Incorreto , Canais Semicirculares/embriologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Orelha Interna/citologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Morfogênese , Receptores de Estrogênio/metabolismo , Canais Semicirculares/anormalidades , Estria Vascular/citologia , Proteínas com Domínio T/química , Técnicas do Sistema de Duplo-Híbrido , Sequenciamento do Exoma
13.
J Physiol ; 599(19): 4497-4516, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426971

RESUMO

Excitable cochlear hair cells convert the mechanical energy of sounds into the electrical signals necessary for neurotransmission. The key process is cellular depolarization via K+ entry from K+ -enriched endolymph through hair cells' mechanosensitive channels. Positive 80 mV potential in endolymph accelerates the K+ entry, thereby sensitizing hearing. This potential represents positive extracellular potential within the epithelial-like stria vascularis; the latter potential stems from K+ equilibrium potential (EK ) across the strial membrane. Extra- and intracellular [K+ ] determining EK are likely maintained by continuous unidirectional circulation of K+ through a putative K+ transport pathway containing hair cells and stria. Whether and how the non-excitable tissue stria vascularis responds to acoustic stimuli remains unclear. Therefore, we analysed a cochlear portion for the best frequency, 1 kHz, by theoretical and experimental approaches. We have previously developed a computational model that integrates ion channels and transporters in the stria and hair cells into a circuit and described a circulation current composed of K+ . Here, in this model, mimicking of hair cells' K+ flow induced by a 1 kHz sound modulated the circulation current and affected the strial ion transport mechanisms; the latter effect resulted in monotonically decreasing potential and increasing [K+ ] in the extracellular strial compartment. Similar results were obtained when the stria in acoustically stimulated animals was examined using microelectrodes detecting the potential and [K+ ]. Measured potential dynamics mirrored the EK change. Collectively, because stria vascularis is electrically coupled to hair cells by the circulation current in vivo too, the strial electrochemical properties respond to sounds. KEY POINTS: A highly positive potential of +80 mV in K+ -enriched endolymph in the mammalian cochlea accelerates sound-induced K+ entry into excitable sensory hair cells, a process that triggers hearing. This unique endolymphatic potential represents an EK -based battery for a non-excitable epithelial-like tissue, the stria vascularis. To examine whether and how the stria vascularis responds to sounds, we used our computational model, in which strial channels and transporters are serially connected to those hair cells in a closed-loop circuit, and found that mimicking hair cell excitation by acoustic stimuli resulted in increased extracellular [K+ ] and decreased the battery's potential within the stria. This observation was overall verified by electrophysiological experiments using live guinea pigs. The sensitivity of electrochemical properties of the stria to sounds indicates that this tissue is electrically coupled to hair cells by a radial ionic flow called a circulation current.


Assuntos
Potássio , Estria Vascular , Animais , Cóclea , Endolinfa , Cobaias , Células Ciliadas Auditivas
14.
J Neurosci Res ; 98(9): 1674-1684, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31066107

RESUMO

Presbycusis, or age-related hearing loss (ARHL), occurs in most mammals with variations in the age of onset, rate of decline, and magnitude of degeneration in the central nervous system and inner ear. The affected cochlear structures include the stria vascularis and its vasculature, spiral ligament, sensory hair cells and auditory neurons. Dysfunction of the stria vascularis results in a reduced endocochlear potential. Without this potential, the cochlear amplification provided by the electro-motility of the outer hair cells is insufficient, and a high-frequency hearing-loss results. Degeneration of the sensory cells, especially the outer hair cells also leads to hearing loss due to lack of amplification. Neuronal degeneration, another hallmark of ARHL, most likely underlies difficulties with speech discrimination, especially in noisy environments. Noise exposure is a major cause of ARHL. It is well-known to cause sensory cell degeneration, especially the outer hair cells at the high frequency end of the cochlea. Even loud, but not uncomfortable, sound levels can lead to synaptopathy and ultimately neuronal degeneration. Even in the absence of a noisy environment, aged cells degenerate. This pathology most likely results from damage to mitochondria and contributes to degenerative changes in the stria vascularis, hair cells, and neurons. The genetic underpinnings of ARHL are still unknown and most likely involve various combinations of genes. At present, the only effective strategy for reducing ARHL is prevention of noise exposure. If future strategies can improve mitochondrial activity and reduce oxidative damage in old age, these should also bring relief.


Assuntos
Cóclea/patologia , Audição/fisiologia , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Envelhecimento/fisiologia , Animais , Células Ciliadas Auditivas/patologia , Humanos
15.
J Neurosci Res ; 98(9): 1685-1697, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30950547

RESUMO

The pathophysiology of age-related hearing loss (ARHL), or presbycusis, involves a complex interplay between environmental and genetic factors. The fundamental biomolecular mechanisms of ARHL have been well described, including the roles of membrane transport, reactive oxygen species, cochlear synaptopathy, vascular insults, hormones, and microRNA, to name a few. The genetic basis underlying these mechanisms remains under-investigated and poorly understood. The emergence of genome-wide association studies has allowed for the identification of specific groups of genes involved in ARHL. This review highlights recent advances in understanding of the pathogenesis of ARHL, the genetic basis underlying these processes and suggests future directions for research and potential therapeutic avenues.


Assuntos
Presbiacusia/genética , Presbiacusia/fisiopatologia , Animais , Cóclea/patologia , Estudo de Associação Genômica Ampla , Humanos , Presbiacusia/patologia , Gânglio Espiral da Cóclea
16.
J Cell Physiol ; 234(3): 1978-1986, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30317595

RESUMO

The study of strial pericytes has gained great interest as they are pivotal for the physiology of stria vascularis. To provide an easily accessible in vitro model, here we described a growth medium-based approach to obtain and cultivate primary bovine cochlear pericytes (BCP) from the stria vascularis of explanted bovine cochleae. We obtained high-quality pericytes in 8-10 days with a > 90% purity after the second passage. Immunocytochemical analysis showed a homogeneous population of cells expressing typical pericyte markers, such as neural/glial antigen 2 (NG2), platelet-derived growth factor receptorß (PDGFRß), α-smooth muscle actin (α-SMA), and negative for the endothelial marker von Willebrand factor. When challenged with tumor necrosis factor or lipopolysaccharide, BCP changed their shape, similarly to human retinal pericytes (HRPC). The sensitivity of BCP to ototoxic drugs was evaluated by challenging with cisplatin or gentamicin for 48 hr. Compared to human retinal endothelial cells and HRPC, cell viability of BCP was significantly lower ( p < 0.05) after the treatment with gentamicin or cisplatin. These data indicate that our protocol provides a simple and reliable method to obtain highly pure strial BCP. Furthermore, BCP are suitable to assess the safety profile of molecules which supposedly exert ototoxic activity, and may represent a valid alternative to in vivo tests.


Assuntos
Cóclea/citologia , Pericitos/citologia , Estria Vascular/citologia , Actinas/metabolismo , Animais , Antígenos/metabolismo , Biomarcadores/metabolismo , Bovinos , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Cisplatino/toxicidade , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Meios de Cultura , Avaliação Pré-Clínica de Medicamentos/métodos , Gentamicinas/toxicidade , Técnicas In Vitro , Modelos Biológicos , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Ototoxicidade/patologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Proteoglicanas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Estria Vascular/efeitos dos fármacos , Estria Vascular/metabolismo
17.
ORL J Otorhinolaryngol Relat Spec ; 81(4): 202-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31340214

RESUMO

Cisplatin is an anti-cancer drug that causes oxotoxic side effects such as impairment of inner ear function and hearing loss. We aimed to investigate the effects of allicin against cisplatin-induced stria vascularis damage in mice, and to clarify the mechanism underlying the protective effects of allicin against ototoxicity. Stria vascularis injury was induced in mice by intraperitoneal injection of cisplatin, which was significantly prevented by pretreatment with allicin. Allicin not only reduced cisplatin-activated expression of cleaved caspase-3 in marginal cells, PVM/Ms (perivascular resident macrophage-like melanocytes), and basal cells of the stria vascularis, but also decreased the expression of poly(ADP-ribose) polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF) nuclear translocation in the stria vascularis cells. Our results demonstrate that allicin plays an effective role in protecting stria vascularis injury induced by cisplatin by inhibiting caspase-dependent, as well as caspase-independent PARP-1-AIF-mediated apoptotic pathways. Therefore, allicin may be useful in preventing cisplatin-induced ototoxicity.


Assuntos
Apoptose , Caspase 3/efeitos dos fármacos , Perda Auditiva/prevenção & controle , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Estria Vascular/efeitos dos fármacos , Ácidos Sulfínicos/farmacologia , Animais , Antioxidantes/farmacologia , Caspase 3/metabolismo , Cisplatino/toxicidade , Modelos Animais de Doenças , Dissulfetos , Feminino , Perda Auditiva/induzido quimicamente , Perda Auditiva/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Poli(ADP-Ribose) Polimerase-1/metabolismo , Estria Vascular/metabolismo , Estria Vascular/ultraestrutura
18.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731459

RESUMO

Noise exposure affects the organ of Corti and the lateral wall of the cochlea, including the stria vascularis and spiral ligament. Although the inner ear vasculature and spiral ligament fibrocytes in the lateral wall consist of a significant proportion of cells in the cochlea, relatively little is known regarding their functional significance. In this study, 6-week-old male C57BL/6 mice were exposed to noise trauma to induce transient hearing threshold shift (TTS) or permanent hearing threshold shift (PTS). Compared to mice with TTS, mice with PTS exhibited lower cochlear blood flow and lower vessel diameter in the stria vascularis, accompanied by reduced expression levels of genes involved in vasodilation and increased expression levels of genes related to vasoconstriction. Ultrastructural analyses by transmission electron microscopy revealed that the stria vascularis and spiral ligament fibrocytes were more damaged by PTS than by TTS. Moreover, mice with PTS expressed significantly higher levels of proinflammatory cytokines in the cochlea (e.g., IL-1ß, IL-6, and TNF-α). Overall, our findings suggest that cochlear microcirculation and lateral wall pathologies are differentially modulated by the severity of acoustic trauma and are associated with changes in vasoactive factors and inflammatory responses in the cochlea.


Assuntos
Cóclea , Citocinas/metabolismo , Perda Auditiva Provocada por Ruído , Ferimentos e Lesões , Animais , Velocidade do Fluxo Sanguíneo , Cóclea/irrigação sanguínea , Cóclea/metabolismo , Cóclea/ultraestrutura , Modelos Animais de Doenças , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Masculino , Camundongos , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Ferimentos e Lesões/fisiopatologia
19.
BMC Neurosci ; 19(1): 28, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716524

RESUMO

BACKGROUND: Auditory function and cochlear morphology have previously been described in a porcine model with spontaneous WS2-like phenotype. In the present study, cochlear histopathology was further investigated in the inner ear of the developing spontaneous deafness pig. RESULTS: We found that the stria vascularis transformed into a complex tri-laminar tissue at embryonic 85 days (E85) in normal pigs, but not in the MITF-/- pigs. As the neural crest (NC) of cochlea was derived by melanocytes. MITF mutation caused failure of development of melanocytes which caused a subsequent collapse of cochlear duct and deficits of the epithelium after E100. Furthermore, the spiral ganglion neurons of cochlea in the MITF-/- pigs began to degenerate at postnatal 30 days (P30). Thus, our histopathological results indicated that the malformation of the stria vascularis was a primary defect in MITF-/- induced WT pigs which was resulted from the loss of NC-derived melanocytes. Subsequently, the cochleae underwent secondary degeneration of the vestibular organs. As the degeneration of spiral ganglion neurons happened after P30, it suggests that WS patients should be considered as candidates for cochlear implant. CONCLUSIONS: Our porcine model of MITF-M mutation may provide a crucial animal model for cochlear implant, cell therapy in patients with congenital hereditary hearing loss.


Assuntos
Cóclea/patologia , Surdez/patologia , Orelha Interna/patologia , Animais , Implantes Cocleares , Orelha Interna/crescimento & desenvolvimento , Melanócitos/patologia , Suínos , Vestíbulo do Labirinto/patologia
20.
J Neurosci ; 36(44): 11308-11319, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807171

RESUMO

Regular physical exercise reduces the risk for obesity, cardiovascular diseases, and disability and is associated with longer lifespan expectancy (Taylor et al., 2004; Pahor et al., 2014; Anton et al., 2015; Arem et al., 2015). In contrast, decreased physical function is associated with hearing loss among older adults (Li et al., 2013; Chen et al., 2015). Here, we investigated the effects of long-term voluntary wheel running (WR) on age-related hearing loss (AHL) in CBA/CaJ mice, a well established model of AHL (Zheng et al., 1999). WR activity peaked at 6 months of age (12,280 m/d) and gradually decreased over time. At 24 months of age, the average WR distance was 3987 m/d. Twenty-four-month-old runners had less cochlear hair cell and spiral ganglion neuron loss and better auditory brainstem response thresholds at the low and middle frequencies compared with age-matched, non-WR controls. Gene ontology (GO) enrichment analysis of inner ear tissues from 6-month-old controls and runners revealed that WR resulted in a marked enrichment for GO gene sets associated with immune response, inflammatory response, vascular function, and apoptosis. In agreement with these results, there was reduced stria vascularis (SV) atrophy and reduced loss of capillaries in the SV of old runners versus old controls. Given that SV holds numerous capillaries that are essential for transporting oxygen and nutrients into the cochlea, our findings suggest that long-term exercise delays the progression of AHL by reducing age-related loss of strial capillaries associated with inflammation. SIGNIFICANCE STATEMENT: Nearly two-thirds of adults aged 70 years or older develop significant age-related hearing loss (AHL), a condition that can lead to social isolation and major communication difficulties. AHL is also associated with decreased physical function among older adults. In the current study, we show that regular exercise slowed AHL and cochlear degeneration significantly in a well established murine model. Our data suggest that regular exercise delays the progression of AHL by reducing age-related loss of strial capillaries associated with inflammation.


Assuntos
Envelhecimento , Cóclea/fisiologia , Terapia por Exercício/métodos , Condicionamento Físico Animal/métodos , Presbiacusia/prevenção & controle , Presbiacusia/fisiopatologia , Animais , Cóclea/patologia , Perda Auditiva , Masculino , Camundongos , Camundongos Endogâmicos DBA , Esforço Físico , Presbiacusia/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA