Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biotechnol Bioeng ; 121(9): 2742-2751, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138870

RESUMO

In this study, a model was developed to simulate the effect of temperature ( T $T$ ) and initial substrate concentration ( S 0 ${S}_{0}$ ) on the ethanol concentration limit ( P max ${P}_{\max }$ ) using the yeast Saccharomyces cerevisiae. To achieve this, regressions were performed using data provided by other authors for P max ${P}_{\max }$ to establish a model dependent on T $T$ and S 0 ${S}_{0}$ capable of predicting results with statistical significance. After constructing the model, a response surface was generated to determine the conditions where P max ${P}_{\max }$ reaches higher values: temperatures between 28°C and 32°C and an initial substrate concentration around 200 g/L. Thus, the proposed model is consistent with the observations that increasing temperatures decrease the ethanol concentration obtained, and substrate concentrations above 200 g/L lead to a reduction in ethanol concentration even at low temperatures such as 28°C.


Assuntos
Etanol , Modelos Biológicos , Saccharomyces cerevisiae , Temperatura , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Fermentação
2.
Appl Environ Microbiol ; 89(2): e0200722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719244

RESUMO

Cupriavidus necator has the unique metabolic capability to grow under heterotrophic, autotrophic, and mixotrophic conditions. In the current work, we examined the effect of growth conditions on the metabolic responses of C. necator. In our lab-scale experiments, autotrophic growth was rapid, with a short lag phase as the exponential growth stage was initiated in 6 to 12 h. The lag phase extended significantly (>22 h) at elevated O2 and CO2 partial pressures, while the duration of the lag phase was independent of the H2 or N2 partial pressure. Under heterotrophic conditions with acetate as the organic substrate, the lag phase length was short (<12 h), but it increased with increasing acetate concentrations. When glucose and glycerol were provided as the organic substrate, the lag phase was consistently long (>12 h) regardless of the examined substrate concentrations (up to 10.0 g/L). In the transition experiments, C. necator cells showed rapid transitions from autotrophic to heterotrophic growth in less than 12 h and vice versa. Our experimental results indicate that C. necator can rapidly grow with both autotrophic and heterotrophic substrates, while the lag time substantially increases with nonacetate organic substrates (e.g., glucose or glycerol), high acetate concentrations, and high O2 and CO2 partial pressures. IMPORTANCE The current work investigated the inhibition of organic and gaseous substrates on the microbial adaption of Cupriavidus necator under several metabolic conditions commonly employed for commercial polyhydroxyalkanoate production. We also proposed a two-stage cultivation system to minimize the lag time required to change over between the heterotrophic, autotrophic, and mixotrophic pathways.


Assuntos
Cupriavidus necator , Processos Heterotróficos , Cupriavidus necator/metabolismo , Dióxido de Carbono/metabolismo , Glicerol/metabolismo , Processos Autotróficos/fisiologia , Acetatos/metabolismo
3.
Compr Rev Food Sci Food Saf ; 22(3): 1597-1612, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36789798

RESUMO

Starch-based sugars are an important group of starch derivatives used in food, medicine, chemistry, and other fields. The production of starch sugars involves starch liquefaction and saccharification processes. The production cost of starch sugars can be reduced by increasing the initial concentration of starch slurry. However, the usage of the highly concentrated starch slurry is characterized by challenges such as low reaction efficiency and poor product performance during the liquefaction and saccharification processes. In this study, we endeavored to provide a reference guide for improving high-concentration starch sugar production. Thus, we reviewed the effects of substrate concentration on the starch sugar production process and summarized several potential strategies. These regulation strategies, such as physical field pretreatment, complex enzyme-assisted, and temperature control, can significantly increase the starch concentration and mitigate the challenges of using highly concentrated starch slurry. We believe that highly concentrated starch sugar production will achieve a qualitative leap in the future. This review provides theoretical guidance and highlights the importance of high concentration in starch-based sugar production. Further studies are needed to explore the fine structure and enzyme attack mode during the liquefaction and saccharification processes to regulate the production of more targeted products.


Assuntos
Alimentos , Amido , Amido/química , Temperatura , Açúcares
4.
J Environ Sci (China) ; 101: 227-235, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33334518

RESUMO

The relatively low sensitivity is an important reason for restricting the microbial fuel cell (MFC) sensors' application in low concentration biodegradable organic matter (BOM) detection. The startup parameters, including substrate concentration, anode area and external resistance, were regulated to enhance the sensitivity of MFC sensors. The results demonstrated that both the substrate concentration and anode area were positively correlated with the sensitivity of MFC sensors, and an external resistance of 210 Ω was found to be optimal in terms of sensitivity of MFC sensors. Optimized MFC sensors had lower detection limit (1 mg/L) and higher sensitivity (Slope value of the linear regression curve was 1.02), which effectively overcome the limitation of low concentration BOM detection. The essential reason is that optimized MFC sensors had higher coulombic efficiency, which was beneficial to improve the sensitivity of MFC sensors. The main impact of the substrate concentration and anode area was to regulate the proportion between electrogens and nonelectrogens, biomass and living cells of the anode biofilm. The external resistance mainly affected the morphology structure and the proportion of living cells of the anode. This study demonstrated an effective way to improve the sensitivity of MFC sensors for low concentration BOM detection.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Biomassa , Eletrodos
5.
Anal Biochem ; 610: 113794, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526199

RESUMO

A novel general principle was proposed to transform enzyme kinetic equations into unified dimensionless forms. The principle consists of six steps. The principle was applied to ten complex biochemical reaction systems and their characteristics were mathematically analyzed. The approach has six merits.: (i) the number of parameters is reduced, (ii) the rate expressions and their progress curves become much simpler, easily understood and are analyzed globally by the newly defined dimensionless time, T, (iii) the relative magnitude of kinetic constants and of the maximum velocity involved in the rate equations are straightforwardly estimated by three type m values, (iv) mass balance and stoichiometric relationship of the dimensionless rate expressions are exactly the same format as of the actual rate expressions, (v) 2D or 3D plots of the unified dimensionless equations can be depicted without inputs of the actual experimental data of the variables and kinetic constants, and (vi) the newly defined dimensionless inactivation constant, Kiact, is useful to estimate the effect of the enzyme inactivation on the batch reactions. The principle is beneficial for the mathematical analyses of complex biochemical reactions involving two or more kinds of enzymes, for those involving two or more substrates or for those involving both.


Assuntos
Enzimas/metabolismo , Modelos Biológicos , Biocatálise , Humanos , Hidrolases/metabolismo , Cinética , Especificidade por Substrato , Transaminases/metabolismo , Transferases/metabolismo
6.
Bioprocess Biosyst Eng ; 43(12): 2295-2303, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743720

RESUMO

The use of fed-batch extractive fermentation can overcome inhibitory effects caused by the substrate and ethanol to the yeast cells, since it allows regulate the substrate concentration and remove the product as it is produced. The present study describes the modelling and experimental validation of ethanol production in fed-batch extractive fermentation with in situ ethanol removal by oleic acid in a non-conventional drop column bioreactor (DCB) operated under industrial conditions. The model developed using the hybrid Andrews-Levenspiel equation and ethanol distribution coefficient parameter (KDE) provided an excellent description of the fed-batch extractive ethanol fermentation process with oleic acid. Furthermore, extractive fed-batch fermentation allowed the feed up to 306.6 kg m-3 of substrate (total reducing sugars), with total ethanol concentration in extractive fermentation in the ranging 100.3-139.8 kg m-3 (12.7-17.7 ºGL), 19.9-67.2% higher when compared with the conventional process without ethanol removal. Moreover, this process has the advantage of less effluent generated and energy consumption for ethanol recovery when compared to the conventional process.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Etanol/química , Fermentação , Microbiologia Industrial/métodos , Cinética , Modelos Teóricos , Ácido Oleico/química , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Açúcares/química
7.
Biotechnol Lett ; 39(7): 983-991, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28315058

RESUMO

OBJECTIVES: To evaluate the influence of hydraulic retention time (HRT) and cheese whey (CW) substrate concentration (15 and 25 g lactose l-1) on the performance of EGSB reactors (R15 and R25, respectively) for H2 production. RESULTS: A decrease in the HRT from 8 to 4 h favored the H2 yield and H2 production rate (HPR) in R15, with maximum values of 0.86 ± 0.11 mmol H2 g COD-1 and 0.23 ± 0.024 l H2 h-1 l-1, respectively. H2 production in R25 was also favored at a HRT of 4 h, with maximum yield and HPR values of 0.64 ± 0.023 mmol H2 g COD-1 and 0.31 ± 0.032 l H2 h-1 l-1, respectively. The main metabolites produced were butyric, acetic and lactic acids. CONCLUSIONS: The EGSB reactor was evaluated as a viable acidogenic step in the two-stage anaerobic treatment of CW for the increase of COD removal efficiency and biomethane production.


Assuntos
Reatores Biológicos/microbiologia , Ácidos Carboxílicos/metabolismo , Queijo , Metabolismo Energético , Hidrogênio/metabolismo , Soro do Leite/metabolismo , Anaerobiose
8.
Glycobiology ; 26(4): 377-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26646447

RESUMO

Two levan distributions are produced typically by Bacillus subtilis levansucrase (SacB): a high-molecular weight (HMW) levan with an average molecular weight of 2300 kDa, and a low-molecular weight (LMW) levan with 7.2 kDa. Previous results have demonstrated how reaction conditions modulate levan molecular weight distribution. Here we demonstrate that the SacB enzyme is able to perform two mechanisms: a processive mechanism for the synthesis of HMW levan and a non-processive mechanism for the synthesis of LMW levan. Furthermore, the effect of enzyme and substrate concentration on the elongation mechanism was studied. While a negligible effect of substrate concentration was observed, we found that SacB elongation mechanism is determined by enzyme concentration. A high concentration of enzyme is required to synthesize LMW levan, involving the sequential formation of a wide variety of intermediate size levan oligosaccharides with a degree of polymerization (DP) up to ∼70. In contrast, an HMW levan distribution is synthesized through a processive mechanism producing oligosaccharides with DP <20, in reactions occurring at low enzyme concentration. Additionally, reactions where levansucrase concentration was varied while the total enzyme activity was kept constant (using a combination of active SacB and an inactive SacB E342A/D86A) allowed us to demonstrate that enzyme concentration and not enzyme activity affects the final levan molecular weight distribution. The effect of enzyme concentration on the elongation mechanism is discussed in detail, finding that protein-product interactions are responsible for the mechanism shift.


Assuntos
Bacillus subtilis/enzimologia , Frutanos/biossíntese , Hexosiltransferases/metabolismo , Frutanos/química , Frutanos/metabolismo , Hexosiltransferases/química , Hexosiltransferases/genética , Cinética , Peso Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Sacarose/química , Sacarose/metabolismo
9.
Appl Microbiol Biotechnol ; 100(10): 4675-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26810080

RESUMO

This study aimed to investigate the interaction between methane production performance and active microbial community dynamics at different loading rates by increasing influent substrate concentration. The model system was an upflow anaerobic sludge blanket (UASB) reactor using molasses wastewater. The active microbial community was analyzed using a ribosomal RNA-based approach in order to reflect active members in the UASB system. The methane production rate (MPR) increased with an increase in organic loading rate (OLR) from 3.6 to 5.5 g COD·L(-1)·day(-1) and then it decreased with further OLR addition until 9.7 g COD·L(-1)·day(-1). The UASB reactor achieved a maximum methane production rate of 0.48 L·L(-1)·day(-1) with a chemical oxygen demand (COD) removal efficiency of 91.2 % at an influent molasses concentration of 16 g COD·L(-1) (OLR of 5.5 g COD·L(-1)·day(-1)). In the archaeal community, Methanosarcina was predominant irrespective of loading rate, and the relative abundance of Methanosaeta increased with loading rate. In the bacterial community, Firmicutes and Eubacteriaceae were relatively abundant in the loading conditions tested. The network analysis between operation parameters and microbial community indicated that MPR was positively associated with most methanogenic archaea, including the relatively abundant Methanosarcina and Methanosaeta, except Methanofollis. The most abundant Methanosarcina was negatively associated with Bifidobacterium and Methanosaeta, whereas Methanosaeta was positively associated with Bifidobacterium.


Assuntos
Biomassa , Reatores Biológicos , Metano/biossíntese , Melaço/microbiologia , Esgotos/microbiologia , Análise da Demanda Biológica de Oxigênio , Euryarchaeota/classificação , Euryarchaeota/metabolismo , Microbiologia Industrial , Methanosarcinaceae/classificação , Methanosarcinaceae/metabolismo , Modelos Teóricos , Melaço/análise , Águas Residuárias/química
10.
Biotechnol Lett ; 38(7): 1165-71, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27025931

RESUMO

OBJECTIVE: To identify an esterase-mediated kinetic resolution of secondary alcohols in non-aqueous medium. RESULTS: An esterase, EST4, from a marine mud metagenomic library, showed high activity and enantioselectivity for the kinetic resolution of secondary alcohols in non-aqueous medium. Using 1-phenylethanol as the model alcohol, the effects of organic solvents, acyl donors, molar ratio, temperatures and biocatalyst loading on the kinetic resolution catalyzed by the EST4 whole-cell biocatalyst were investigated and optimized. The optimized methodology was effective on resolving 16 various racemic secondary alcohols in neat n-hexane, providing excellent enantiomeric excess (up to 99.9 % ee). Moreover, EST4 exhibited a strong tolerance for high substrate concentration (up to 1 M), and the optical purity of the desired secondary alcohols was kept above 99 % ee. CONCLUSION: The esterase EST4 is a promising biocatalyst for the enantioselective synthesis of various alcohols and esters with interesting practical applications.


Assuntos
Álcoois/metabolismo , Esterases/metabolismo , Álcoois/química , Cinética , Solventes/química , Solventes/metabolismo , Estereoisomerismo
11.
Adv Appl Microbiol ; 88: 103-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24767427

RESUMO

In this review, the present knowledge on the occurrence of cellulases, with a special emphasis on the presence of carbohydrate-binding modules (CBMs) in various fungal strains, has been summarized. The importance of efficient fungal cellulases is growing due to their potential uses in biorefinery processes where lignocellulosic biomasses are converted to platform sugars and further to biofuels and chemicals. Most secreted cellulases studied in detail have a bimodular structure containing an active core domain attached to a CBM. CBMs are traditionally been considered as essential parts in cellulases, especially in cellobiohydrolases. However, presently available genome data indicate that many cellulases lack the binding domains in cellulose-degrading organisms. Recent data also demonstrate that CBMs are not necessary for the action of cellulases and they solely increase the concentration of enzymes on the substrate surfaces. On the other hand, in practical industrial processes where high substrate concentrations with low amounts of water are employed, the enzymes have been shown to act equally efficiently with and without CBM. Furthermore, available kinetic data show that enzymes without CBMs can desorb more readily from the often lignaceous substrates, that is, they are not stuck on the substrates and are thus available for new actions. In this review, the available data on the natural habitats of different wood-degrading organisms (with emphasis on the amount of water present during wood degradation) and occurrence of cellulose-binding domains in their genome have been assessed in order to identify evolutionary advantages for the development of CBM-less cellulases in nature.


Assuntos
Biomassa , Celulases/fisiologia , Fungos/enzimologia , Adsorção , Basidiomycota/metabolismo , Carboidratos/química , Celulases/química , Celulose/metabolismo , Hidrólise , Lignina/metabolismo
12.
Int J Biol Macromol ; 264(Pt 2): 130701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458283

RESUMO

Increasing the substrate concentration can effectively reduce energy consumption and result in more economic benefits in the industrial production of maltose, but this process remarkably increases the viscosity, which has a negative effect on saccharification. To improve saccharification efficiency, pullulanase is usually employed. In the conventional process of maltose production, pullulanase is added at the same time with ß-amylase or later, but this process seems inefficient when the substrate concentration is high. Herein, a novel method was introduced to enhance the maltose yield under high substrate concentration. The results indicated that the pullulanase pretreatment of highly concentrated maltodextrin solution for 2 h greatly affects the final conversion rate of ß-amylase-catalyzed saccharification. The maltose yield reached 80.95 %, which is 11.8 % above the control value. Further examination confirmed that pullulanase pretreatment decreased the number of branch points of maltodextrin and resulted in a high content of oligosaccharides. These linear chains were suitable for ß-amylase-catalyzed saccharification to produce maltose. This research offers a new effective and green strategy for starch sugar production.


Assuntos
Polissacarídeos , beta-Amilase , Maltose , Glicosídeo Hidrolases , Amido/química , Catálise
13.
Sci Total Environ ; 924: 171572, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461998

RESUMO

Nitrous oxide (N2O) is the third most important greenhouse gas, and can damage the atmospheric ozone layer, with associated threats to terrestrial ecosystems. However, to date it is unclear how extreme precipitation and nitrogen (N) input will affect N2O emissions in temperate desert steppe ecosystems. Therefore, we conducted an in-situ in a temperate desert steppe in the northwest of Inner Mongolia, China between 2018 and 2021, in which N inputs were combined with natural extreme precipitation events, with the aim of better understanding the mechanism of any interactive effects on N2O emission. The study result showed that N2O emission in this desert steppe was relatively small and did not show significant seasonal change. The annual N2O emission increased in a non-linear trend with increasing N input, with a much greater effect of N input in a wet year (2019) than in a dry year (2021). This was mainly due to the fact that the boost effect of high N input (on June 17th 2019) on N2O emission was greatly amplified by nearly 17-46 times by an extreme precipitation event on June 24th 2019. In contrast, this greatly promoting effect of high N input on N2O emission was not observed on September 26th 2019 by a similar extreme precipitation event. Further analysis showed that soil NH4+-N content and the abundance of ammonia oxidizing bacteria (amoA (AOB)) were the most critical factors affecting N2O emission. Soil moisture played an important indirect role in regulating N2O emission, mainly by influencing the abundance of amoA (AOB) and de-nitrification functional microorganisms (nosZ gene). In conclusion, the effect of extreme precipitation events on N2O emission was greatly increased by high N input. Furthermore, in this desert steppe, annual N2O flux is co-managed through soil nitrification substrate concentration (NH4+-N), the abundance of soil N transformation functional microorganisms and soil moisture. Overall, it was worth noting that an increase in extreme precipitation coupled with increasing N input may significantly increase future N2O emissions from desert steppes.


Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Microbiologia do Solo , Nitrificação , Solo/química , Óxido Nitroso/análise
14.
Foods ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39335925

RESUMO

Achieving enzymatic food processing at high substrate concentrations can significantly enhance production efficiency; however, related studies are notably insufficient. This study focused on the enzymatic synthesis of fructooligosaccharides (FOS) at high temperature and high substrate concentration. Results revealed that increased viscosity and limited substrate solubility in high-concentration systems could be alleviated by raising the reaction temperature, provided it aligned with the enzyme's thermostability. Further analysis of enzyme thermostability in real sucrose solutions demonstrates that the enzyme's thermostability was remarkedly improved at higher sucrose concentrations, evidenced by a 10.3 °C increase in melting temperature (Tm) in an 800 g/L sucrose solution. Building upon these findings, we developed a novel method for enzymatic FOS synthesis at elevated temperatures and high sucrose concentrations. Compared to existing commercial methods, the initial transglycosylation rate and volumetric productivity for FOS synthesis increased by 155.9% and 113.5%, respectively, at 65 °C in an 800 g/L sucrose solution. This study underscores the pivotal role of substrate concentration, incubation temperature, and the enzyme's actual status in advancing enzyme-catalyzed processes and demonstrates the potential of enzymatic applications in enhancing food processing technologies, providing innovative strategies for the food industry.

15.
Toxicology ; 509: 153946, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270966

RESUMO

Among all the heavy metals, Pb, Cd, and As are the most harmful pollutants in the environment. They reach into the organisms via various levels of food chains i.e. air and water. Glutathione-s-transferase (GST, E.C. 2.5.1.18), a key enzyme of xenobiotics metabolism, plays an important role in the removal of several toxicants. The present study aimed to evaluate any inhibitory action of these heavy metals on the GST enzyme isolated from the hepatic tissues of rats. A 10 % (w/v) homogenate of rat liver was prepared in cold and centrifuged at 4 °C at 9000xg for 30 min. The supernatant was collected and kept frozen at -20 °C or used fresh for carrying out different experiments. The activity of GST was monitored spectrophotometrically at 340 nm using 220 µg of soluble protein with varying equal substrate concentrations (0.125-2 mM) in phosphate buffer (50 mM, pH 6.5). To assess the impact of heavy metals on the enzyme activity, different concentrations of Cd (0-0.6 mM) and Pb (0-2 mM) were added to the reaction mixture followed by monitoring the residual activity. The optimum temperature and pH of rat liver GST were found to be 37 °C and 6.5, respectively. The Km value for GST was 0.69 mM and the Vmax was found to be 78.67 U/mg. The Cd and Pb significantly altered the kinetic behaviour of the enzyme. The Vmax and Kcat/Km parameters of GST were recorded to be decreased after interaction with Cd and Pb individually and showed a mixed type of inhibition pattern suggesting that these inhibitors may have a greater binding affinity either for the free enzyme or the substrate-enzyme complex. These metals showed a time-dependent enzyme inhibition profile. Cd was found to be the most potent inhibitor when compared to other treated metals; the order of inhibitory effect of metal ions was Cd>Pb>As. The in silico ion docking analysis for determining the probable interactions of Cd and Pb with fragmented GST validated that Cd exhibited higher inhibition potential for the enzyme as compared to Pb. The results of the present study indicated that exposure of both the Cd and Pb may cause significant inhibition of hepatic GST; the former with higher inhibitory potential than the later. However, As proved to be least effective against the enzyme under the aforesaid experimental conditions.

16.
Environ Sci Pollut Res Int ; 30(49): 108176-108187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749470

RESUMO

Electroactive biofilms (EABs) have aroused wide concern in waste treatment due to their unique capability of extracellular electron transfer with solid materials. The combined effect of different operating conditions on the formation, microbial architecture, composition, and metabolic activity of EABs is still unknown. In this study, the impact of three different factors (anode electrode, substrate concentration, and resistance) on the acclimation and performance of EABs was investigated. The results showed that the shortest start-up time of 127.3 h and highest power density of 0.84 W m-2 were obtained with carbon brush as electrode, low concentration of substrate (1.0 g L-1), and 1000 Ω external resistance (denoted as N1). The EABs under N1 condition also represented strongest redox capacity, lowest internal resistance, and close arrangement of bacteria. Moreover, the EABs cultured under different conditions both showed similar results, with direct electron transfer (DET) dominated from EABs to anode. Microbial community compositions indicated that EABs under N1 condition have lowest diversity and highest abundance of electroactive bacteria (46.68%). Higher substrate concentration (3.0 g L-1) promoted the proliferation of some other bacteria without electroactivity, which was adverse to EABs. The metabolic analysis showed the difference of genes related to electron transfer (cytochrome C and pili) and biofilm formation (xap) of EABs under different conditions, which further demonstrated the higher electroactivity of EABs under N1. These results provided a comprehensive understanding of the effect of different operating conditions on EABs including biofilm formation and electrochemical activity.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Geobacter/metabolismo , Biofilmes , Oxirredução , Transporte de Elétrons , Eletrodos , Bactérias , Aclimatação , Fontes de Energia Bioelétrica/microbiologia
17.
Water Res ; 228(Pt A): 119377, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427463

RESUMO

Adaptation to substrate fluctuations is a life actuality of microbes in global municipal wastewater treatment plants (WWTPs). Yet there remains a lack of definite information on how influent changes with different alternation frequencies shape the stability of anammox consortia and the metabolic regulations they feedback. According to human rhythmic activity, day-fluctuant fed (every 6 h, alternating between 50 and 100 mg NH4+-N/L) substantially diminished the robustness of nitrogen removal efficiency (NRE; 84.1 ± 7.0%, left-skewed distribution [R2 = 0.87]) and shock-resistance ability (>30% effluent variability). Unexpectedly, the anammox ecosystem under week-fluctuant mode (every 6 d) displayed adapted growth (NRE 86.6 ± 3.1%, normal distribution [R2 = 0.97]), higher extracellular polymeric substances (EPS) yields, and superior tolerance (juggling the shortest recovery time and highest NRE, tightest protein secondary structure facing long-term load shocks) than steady-state (75 mg NH4+-N/L). 16S sequencing showed that the influent disturbance led to increased levels of bacterial diversity, however, a similar microbiota composition between week-fluctuant and steady systems was detected. Notably, K strategist Candidatus Kuenenia was more sensitive to substrate fluctuations, with the lower relative abundance at day-fluctuant (23.4 ± 5.1%) and week-fluctuant (39.5 ± 4.3%) than at steady-state community (47.5 ± 4.2%). Conversely, Candidatus Jettenia had higher relative abundance at day-fluctuant (i.e., 1.3 ± 0.1%) compared to that at week-fluctuant (0.2 ± 0.04%) and steady-state (0.05 ± 0.03%). Importantly, untargeted metabolomics revealed that week-fluctuant grown anammox microbiota increased protein synthesis and transporter expression while decreasing expression of catabolic pathways (citric acid cycle and bypass) as a strategy for efficient substrate uptake and utilization, which clearly different to day-fluctuant and steady-state survival ways. Overall, we predictively reported an "anabolic adaptation growth state" for the anammox consortia and put forward the associated reinforcement control strategy.


Assuntos
Oxidação Anaeróbia da Amônia , Microbiota , Humanos , Aclimatação , Transporte Biológico
18.
Waste Manag ; 164: 29-36, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023642

RESUMO

In this study, food waste saccharified residue was used to produce volatile fatty acids (VFAs), and the effects of substrate concentration on VFA production, VFA composition, acidogenic efficiency, microbial community, and carbon transfer were investigated. Interestingly, chain elongation from acetate to n-butyrate played an important role with a substrate concentration of 200 g/L in the acidogenesis process. Results showed that 200 g/L was a suitable substrate concentration for both VFA and n-butyrate production, the highest VFA production, and n-butyrate composition were 280.87 mg COD/g vS and more than 90.00 %, respectively, and VFA/SCOD reached 82.39 %. Microbial analysis showed that Clostridium_Sensu_Stricto_12 promoted n-butyrate production by chain elongation. Carbon transfer analysis indicated that chain elongation made a contribution of 43.93 % to n-butyrate production. Totally 38.47 % of organic matter in food waste saccharified residue was further utilized. This study provides a new way for n-butyrate production with waste recycling and low cost.


Assuntos
Alimentos , Eliminação de Resíduos , Fermentação , Anaerobiose , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis , Reatores Biológicos , Butiratos , Carbono , Esgotos/química
19.
Bioresour Technol ; 368: 128375, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36414142

RESUMO

Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highest caproate (4.04 g/L) and butyrate (13.96 g/L) concentrations were obtained by EF at 40% substrate concentration. TF experiments showed that the substrate concentration above 40% severely inhibited ethanol oxidation and products formation. Compared with TF mode, the total substrates consumption and product yields under EF mode were significantly increased by 2.6%-43.5% and 54.0%-83.0%, respectively. Microbial analysis indicated that EF effectively alleviated substrate toxicity and enriched chain elongation bacteria, particularly Clostridium_sensu_stricto 12, thereby promoting ethanol oxidation and products formation. Caproiciproducens tolerated high-concentration substrates to ensure normal lactate metabolism. This study provides a new way to produce MCFAs from high concentration wastewater.


Assuntos
Etanol , Ácidos Graxos , Fermentação , Biomassa , Análise Espectral
20.
Environ Technol ; 43(18): 2730-2742, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683170

RESUMO

The effect of low strength on anaerobic ammonium oxidation (anammox) was investigated in an anaerobic moving bed biofilm reactor (AMBBR) treating artificial wastewater. Influent NH4+-N concentration with 10.74 ± 2.73 mg L-1 adversely impacted nitrogen removal permanence, the total nitrogen removal efficiency was significantly increased from 61.4% to 80.0%, when influent nitrogen increased to 22.36 ± 5.83 mg·L-1. NH4+-N removal efficiency decreased obviously while that of NO2--N was basically unaffected by the influent nitrogen concentration decrease. Illumina high-throughput sequencing results revealed that the predominant bacterial (64.71%) phylum was Proteobacteria and the dominant functional microorganisms were Nitrosospira, Nitrospira, and Candidatus Brocadia. Simple model simulation results showed that the inhibition effect of the low substrate was most likely due to the increase of bulk DO, which comes from influent and gas-liquid transfer. The reversible inhibition effect of low strength on nitrogen removal performance in an anammox reactor was demonstrated, and strictly regulation of the bulk DO was presumed to be critical to achieve a successful and stable operating performance under low strength.


Assuntos
Compostos de Amônio , Nitrogênio , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias , Reatores Biológicos/microbiologia , Desnitrificação , Oxirredução , Esgotos/microbiologia , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA