RESUMO
Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42-) reduction produces large depletions in H2 The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42- reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.
Assuntos
Fontes Hidrotermais/química , Temperatura Alta , Hidrogênio/química , Fontes Hidrotermais/microbiologia , Oxirredução , Água do Mar/químicaRESUMO
Global marine sediments harbor a large and highly diverse microbial biosphere, but the mechanism by which this biosphere is established during sediment burial is largely unknown. During burial in marine sediments, concentrations of easily metabolized organic compounds and total microbial cell abundance decrease. However, it is unknown whether some microbial clades increase with depth. We show total population increases in 38 microbial families over 3 cm of sediment depth in the upper 7.5 cm of White Oak River (WOR) estuary sediments. Clades that increased with depth were more often associated with one or more of the following: anaerobes, uncultured, or common in deep marine sediments relative to those that decreased. Maximum doubling times (in situ steady-state growth rates could be faster to balance cell decay) were estimated as 2 to 25 years by combining sedimentation rate with either quantitative PCR (qPCR) or the product of the fraction read abundance of 16S rRNA genes and total cell counts (FRAxC). Doubling times were within an order of magnitude of each other in two adjacent cores, as well as in two laboratory enrichments of Cape Lookout Bight (CLB), NC, sediments (average difference of 28% ± 19%). qPCR and FRAxC in sediment cores and laboratory enrichments produced similar doubling times for key deep subsurface uncultured clades Bathyarchaeota (8.7 ± 1.9 years) and Thermoprofundales/MBG-D (4.1 ± 0.7 years). We conclude that common deep subsurface microbial clades experience a narrow zone of growth in shallow sediments, offering an opportunity for selection of long-term subsistence traits after resuspension events.IMPORTANCE Many studies show that the uncultured microbes that dominate global marine sediments do not actually increase in population size as they are buried in marine sediments; rather, they exist in a sort of prolonged torpor for thousands of years. This is because, although studies have shown biomass turnover in these clades, no evidence has ever been found that deeper sediments have larger populations for specific clades than shallower layers. We discovered that they actually do increase population sizes during burial, but only in the upper few centimeters. This suggests that marine sediments may be a vast repository of mostly nongrowing microbes with a thin and relatively rapid area of cell abundance increase in the upper 10 cm, offering a chance for subsurface organisms to undergo natural selection.
Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Microbiota , Rios/microbiologia , Anaerobiose , North Carolina , RNA Arqueal/análise , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNARESUMO
A novel, obligately anaerobic bacterium (strain SURF-ANA1T) was isolated from deep continental subsurface fluids at a depth of 1500 m below surface in the former Homestake Gold Mine (now Sanford Underground Research Facility, in Lead, South Dakota, USA). Cells of strain SURF-ANA1T were Gram-negative, helical, non-spore-forming and were 0.25-0.55×5.0-75.0 µm with a wavelength of 0.5-0.62 µm. Strain SURF-ANA1T grew at 15-50 °C (optimally at 40 °C), at pH 4.8-9.0 (pH 7.2) and in 1.0-40.0 g l-1 NaCl (10 g l-1 NaCl). The strain grew chemoheterotrophically with hydrogen or mono-, di- and polysaccharides as electron donors. The major cellular fatty acids in order of decreasing abundance (comprising >5% of total) were 10-methyl C16:0, iso-C15:0, C18:2 and C18:0 dimethyl acetal (DMA) and C20:0 methylene-nonadecanoic acid. Phylogenetic analysis based on the 16S rRNA gene sequence of strain SURF-ANA1T indicated a closest relationship with the recently characterized Rectinema cohabitans (99%). Despite high sequence identity, because of its distinct physiology, morphology and fatty acid profile, strain SURF-ANA1T is considered to represent a novel species within the genus Rectinema, for which the name Rectinema subterraneum sp. nov. is proposed. To our knowledge, this is the first report of an isolate within the phylum Spirochaetes from the deep (>100 m) terrestrial subsurface. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and genomic sequences of strain SURF-ANA1T are KU359248 and GCF 009768935.1, respectively. The type strain of Rectinema subterraneum is SURF-ANA1T (=ATCC TSD-67=JCM 32656).
Assuntos
Água Subterrânea/microbiologia , Filogenia , Spirochaetaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , South Dakota , Spirochaetaceae/isolamento & purificaçãoRESUMO
Bacteria of candidate phylum OP8 (Aminicenantes) have been identified in various terrestrial and marine ecosystems as a result of molecular analysis of microbial communities. So far, none of the representatives of Aminicenantes have been isolated in a pure culture. We assembled the near-complete genome of a member of Aminicenantes from the metagenome of the 2-km-deep subsurface thermal aquifer in Western Siberia and used genomic data to analyze the metabolic pathways of this bacterium and its ecological role. This bacterium, designated BY38, was predicted to be rod shaped, it lacks flagellar machinery but twitching motility is encoded. Analysis of the BY38 genome revealed a variety of glycosyl hydrolases that can enable utilization of carbohydrates, including chitin, cellulose, starch, mannose, galactose, fructose, fucose, rhamnose, maltose and arabinose. The reconstructed central metabolic pathways suggested that Aminicenantes bacterium BY38 is an anaerobic organotroph capable of fermenting carbohydrates and proteinaceous substrates and performing anaerobic respiration with nitrite. In the deep subsurface aquifer Aminicenantes probably act as destructors of buried organic matter and produce hydrogen and acetate. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Saccharicenans subterraneum.
Assuntos
Bactérias Anaeróbias/genética , Genoma Bacteriano , Bactérias Gram-Negativas/genética , Água Subterrânea/microbiologia , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/metabolismo , Filogenia , Açúcares/metabolismoRESUMO
Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.
Assuntos
Biofilmes , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Ferro/metabolismo , Microbiota , Biotransformação , Sedimentos Geológicos/química , Água Subterrânea/química , OxirreduçãoRESUMO
Subsurface karst caves provide unique opportunities to study the deep biosphere, shedding light on microbial contribution to elemental cycling. Although ammonia oxidation driven by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) is well explored in soil and marine environments, our understanding in the subsurface biosphere still remained limited to date. To address this gap, weathered rock and sediment samples were collected from the Xincuntun Cave in Guilin City, an alkaline karst cave, and subjected to high-throughput sequencing and quantification of bacterial and archaeal amoA, along with determination of the potential nitrification rates (PNR). Results revealed that AOA dominated in ammonia oxidation, contributing 48-100% to the PNR, and AOA amoA gene copies outnumbered AOB by 2 to 6 orders. Nitrososphaera dominated in AOA communities, while Nitrosopira dominated AOB communities. AOA demonstrated significantly larger niche breadth than AOB. The development of AOA communities was influenced by deterministic processes (50.71%), while AOB communities were predominantly influenced by stochastic processes. TOC, NH4+, and Cl- played crucial roles in shaping the compositions of ammonia oxidizers at the OTU level. Cross-domain co-occurrence networks highlighted the dominance of AOA nodes in the networks and positive associations between AOA and AOB, especially in the inner zone, suggesting collaborative effort to thrive in extreme environments. Their high gene copies, dominance in the interaction with ammonia oxidizing bacteria, expansive niche breadth and substantial contribution to PNR collectively confirmed that AOA better adapted to alkaline, oligotrophic karst caves environments, and thus play a fundamental role in nitrogen cycling in subsurface biosphere.
RESUMO
In recent years, strong evidence has emerged indicating the potential habitability of the subsurface of Mars. Occasional discharge events that bring subsurface fluids to the surface may carry with them the biological traces of subsurface organisms. Similar events are known to take place on Earth and are frequently associated with long-term mineralogical preservation of organic material, including DNA. Taking advantage of this process may allow for the development of life-detection strategies targeting biosignatures from the more habitable subsurface environment without the need for direct subsurface exploration. To test the potential for this approach to life-detection, we adapted a protocol to extract microbial DNA preserved in carbonate rocks and tested its efficacy in detecting subsurface organisms at a Mars analog site in southeastern Utah, USA, using samples from ancient and modern carbonate deposits associated with natural and artificial springs. Our results indicated that DNA from deep-subsurface organisms preserved in carbonate deposits can remain recoverable for up to 100,000 years, supporting life-detection strategies based on the detection of deep-subsurface biosignatures in surface-exposed rocks on Mars.
Assuntos
Carbonatos , Marte , Utah , Planeta TerraRESUMO
Karst caves are usually considered as natural laboratories to study pristine microbiomes in subsurface biosphere. However, effects of the increasingly detected nitrate in underground karst ecosystem due to the acid rain impact on microbiota and their functions in subsurface karst caves have remained largely unknown. In this study, samples of weathered rocks and sediments were collected from the Chang Cave, Hubei province and subjected to high-throughput sequencing of 16S rRNA genes. The results showed that nitrate significantly impacted bacterial compositions, interactions, and functions in different habitats. Bacterial communities clustered according to their habitats with distinguished indicator groups identified for each individual habitat. Nitrate shaped the overall bacterial communities across two habitats with a contribution of 27.2%, whereas the pH and TOC, respectively, structured bacterial communities in weathered rocks and sediments. Alpha and beta diversities of bacterial communities increased with nitrate concentration in both habitats, with nitrate directly affecting alpha diversity in sediments, but indirectly on weathered rocks by lowering pH. Nitrate impacted more on bacterial communities in weathered rocks at the genus level than in sediments because more genera significantly correlated with nitrate concentration in weathered rocks. Diverse keystone taxa involved in nitrogen cycling were identified in the co-occurrence networks such as nitrate reducers, ammonium-oxidizers, and N2-fixers. Tax4Fun2 analysis further confirmed the dominance of genes involved in nitrogen cycling. Genes of methane metabolism and carbon fixation were also dominant. The dominance of dissimilatory and assimilatory nitrate reduction in nitrogen cycling substantiated nitrate impact on bacterial functions. Our results for the first time revealed the impact of nitrate on subsurface karst ecosystem in terms of bacterial compositions, interactions, and functions, providing an important reference for further deciphering the disturbance of human activities on the subsurface biosphere.
RESUMO
Nitrogen (N) is an essential element for life. N compounds such as ammonium ( NH 4 + ) may act as electron donors, while nitrate ( NO 3 - ) and nitrite ( NO 2 - ) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H2) generated through water-rock reactions promotes habitable conditions for microbial life. Here, we analyzed N and oxygen (O) isotope composition to investigate the source, abundance, and cycling of N species within the Samail Ophiolite of Oman. The dominant dissolved N species was dependent on the fluid type, with Mg2+- HCO 3 - type fluids comprised mostly of NO 3 - , and Ca2+-OH- fluids comprised primarily of ammonia (NH3). We infer that fixed N is introduced to the serpentinite aquifer as NO 3 - . High concentrations of NO 3 - (>100 µM) with a relict meteoric oxygen isotopic composition (δ18O ~ 22, Δ17O ~ 6) were observed in shallow aquifer fluids, indicative of NO 3 - sourced from atmospheric deposition (rainwater NO 3 - : δ18O of 53.7, Δ17O of 16.8) mixed with NO 3 - produced in situ through nitrification (estimated endmember δ18O and Δ17O of ~0). Conversely, highly reacted hyperalkaline fluids had high concentrations of NH3 (>100 µM) with little NO 3 - detectable. We interpret that NH3 in hyperalkaline fluids is a product of NO 3 - reduction. The proportionality of the O and N isotope fractionation (18ε / 15ε) measured in Samail Ophiolite NO 3 - was close to unity (18ε / 15ε ~ 1), which is consistent with dissimilatory NO 3 - reduction with a membrane-bound reductase (NarG); however, abiotic reduction processes may also be occurring. The presence of genes commonly involved in N reduction processes (narG, napA, nrfA) in the metagenomes of biomass sourced from aquifer fluids supports potential biological involvement in the consumption of NO 3 - . Production of NH 4 + as the end-product of NO 3 - reduction via dissimilatory nitrate reduction to ammonium (DNRA) could retain N in the subsurface and fuel nitrification in the oxygenated near surface. Elevated bioavailable N in all sampled fluids indicates that N is not likely limiting as a nutrient in serpentinites of the Samail Ophiolite.
RESUMO
Despite being one of the largest microbial ecosystems on Earth, many basic open questions remain about how life exists and thrives in the deep subsurface biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult and often prohibitively expensive to directly sample the deep subsurface, requiring elaborate drilling programs or access to deep mines. We propose a sampling approach which involves collection of a large suite of geological, geochemical, and biological data from numerous deeply-sourced seeps-including lower temperature sites-over large spatial scales. This enables research into interactions between the geosphere and the biosphere, expanding the classical local approach to regional or even planetary scales. Understanding the interplay between geology, geochemistry and biology on such scales is essential for building subsurface ecosystem models and extrapolating the ecological and biogeochemical roles of subsurface microbes beyond single site interpretations. This approach has been used successfully across the Central and South American Convergent Margins, and can be applied more broadly to other types of geological regions (i.e., rifting, intraplate volcanic, and hydrothermal settings). Working across geological spatial scales inherently encompasses broad temporal scales (e.g., millions of years of volatile cycling across a convergent margin), providing access to a framework for interpreting evolution and ecosystem functions through deep time and space. We propose that tectonic interactions are fundamental to maintaining planetary habitability through feedbacks that stabilize the ecosphere, and deep biosphere studies are fundamental to understanding geo-bio feedbacks on these processes on a global scale.
RESUMO
Karst caves are a natural oligotrophic subsurface biosphere widely distributed in southern China. Despite the progress in bacterial and fungal diversity, the knowledge about interactions between bacteria, fungi, and minerals is still limited in caves. Hence, for the first time, we investigated the interaction between bacteria and fungi living on weathered rocks in the Heshang Cave via high-throughput sequencing of 16S rRNA and ITS1 genes, and co-occurrence analysis. The mineral compositions of weathered rocks were analyzed by X-ray diffraction. Bacterial communities were dominated by Actinobacteria (33.68%), followed by Alphaproteobacteria (8.78%), and Planctomycetia (8.73%). In contrast, fungal communities were dominated by Sordariomycetes (21.08%) and Dothideomycetes (14.06%). Mineral substrata, particularly phosphorus-bearing minerals, significantly impacted bacterial (hydroxyapatite) and fungal (fluorapatite) communities as indicated by the redundancy analysis. In comparison with fungi, the development of bacterial communities was more controlled by the environmental selection indicated by the overwhelming contribution of deterministic processes. Co-occurrence network analysis showed that all nodes were positively linked, indicating ubiquitous cooperation within bacterial groups and fungal groups, as well as between bacteria and fungi under oligotrophic conditions in the subsurface biosphere. In total, 19 bacterial ASVs and 34 fungal OTUs were identified as keystone taxa, suggesting the fundamental role of fungi in maintaining the microbial ecosystem on weathered rocks. Ascomycota was most dominant in keystone taxa, accounting for 26.42%, followed by Actinobacteria in bacteria (24.53%). Collectively, our results confirmed the highly diverse bacterial and fungal communities on weathered rocks, and their close cooperation to sustain the subsurface ecosystem. Phosphorus-bearing minerals were of significance in shaping epipetreous bacterial and fungal communities. These observations provide new knowledge about microbial interactions between bacteria, fungi, and minerals in the subterranean biosphere.
RESUMO
The continental subsurface harbors microbial populations highly enriched in uncultured taxa. OPB41 is an uncultured order-level phylogenetic lineage within the actinobacterial class Coriobacteriia. OPB41 bacteria have a wide geographical distribution, but the physiology and metabolic traits of this cosmopolitan group remain elusive. From two contrasting subsurface environments, a terrestrial mud volcano and a deep subsurface aquifer, located in the central part of Eurasia, within the Caucasus petroleum region, we have isolated two pure cultures of anaerobic actinobacteria belonging to OPB41. The cells of both strains are small non-motile rods forming numerous pili-like appendages. Strain M08DHBT is mesophilic, while strain Es71-Z0120T is a true thermophile having a broad temperature range for growth (25-77°C). Strain M08DHBT anaerobically reduces sulfur compounds and utilizes an aromatic compound 3,4-dihydroxybenzoic acid. Strain Es71-Z0120T is an obligate dissimilatory Fe(III) reducer that is unable to utilize aromatic compounds. Both isolates grow lithotrophically and consume molecular hydrogen or formate using either thiosulfate, elemental sulfur, or Fe(III) as an electron acceptor. Genomes of the strains encode the putative reductive glycine pathway for autotrophic CO2 fixation, Ni-Fe hydrogenases, putative thiosulfate/polysulfide reductases, and multiheme c-type cytochromes presumably involved in dissimilatory Fe(III) reduction. We propose to assign the isolated strains to the novel taxa of the species-order levels and describe strain M08DHBT as Anaerosoma tenue gen. nov., sp. nov., and strain Es71-Z0120T as Parvivirga hydrogeniphila gen. nov., sp. nov., being members of Anaerosomatales ord. nov. This work expands the knowledge of the diversity, metabolic functions, and ecological role of the phylum Actinomycetota.
RESUMO
In Earth's deep continental subsurface, where groundwaters are often isolated for >106 to 109 years, energy released by radionuclides within rock produces oxidants and reductants that drive metabolisms of non-photosynthetic microorganisms. Similar processes could support past and present life in the martian subsurface. Sulfate-reducing microorganisms are common in Earth's deep subsurface, often using hydrogen derived directly from radiolysis of pore water and sulfate derived from oxidation of rock-matrix-hosted sulfides by radiolytically derived oxidants. Radiolysis thus produces redox energy to support a deep biosphere in groundwaters isolated from surface substrate input for millions to billions of years on Earth. Here, we demonstrate that radiolysis by itself could produce sufficient redox energy to sustain a habitable environment in the subsurface of present-day Mars, one in which Earth-like microorganisms could survive wherever groundwater exists. We show that the source localities for many martian meteorites are capable of producing sufficient redox nutrients to sustain up to millions of sulfate-reducing microbial cells per kilogram rock via radiolysis alone, comparable to cell densities observed in many regions of Earth's deep subsurface. Additionally, we calculate variability in supportable sulfate-reducing cell densities between the martian meteorite source regions. Our results demonstrate that martian subsurface groundwaters, where present, would largely be habitable for sulfate-reducing bacteria from a redox energy perspective via radiolysis alone. We present evidence for crustal regions that could support especially high cell densities, including zones with high sulfide concentrations, which could be targeted by future subsurface exploration missions.
Assuntos
Marte , Meteoroides , Planeta Terra , Meio Ambiente Extraterreno , HidrogênioRESUMO
Deep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH4 and H2), (ii) CO2 sequestration; and (iii) resource (water, rare metals) exploitation. The aquifer studied here (720m deep, 37°C, 88bar) is naturally oligotrophic, with a total organic carbon content of <1mg.L-1 and a phosphate content of 0.02mg.L-1. The influence of natural gas storage locally generates different pressures and formation water displacements, but it also releases organic molecules such as monoaromatic hydrocarbons at the gas/water interface. The hydrocarbon biodegradation ability of the indigenous microbial community was evaluated in this work. The in situ microbial community was dominated by sulfate-reducing (e.g., Sva0485 lineage, Thermodesulfovibriona, Desulfotomaculum, Desulfomonile, and Desulfovibrio), fermentative (e.g., Peptococcaceae SCADC1_2_3, Anaerolineae lineage and Pelotomaculum), and homoacetogenic bacteria ("Candidatus Acetothermia") with a few archaeal representatives (e.g., Methanomassiliicoccaceae, Methanobacteriaceae, and members of the Bathyarcheia class), suggesting a role of H2 in microenvironment functioning. Monoaromatic hydrocarbon biodegradation is carried out by sulfate reducers and favored by concentrated biomass and slightly acidic conditions, which suggests that biodegradation should preferably occur in biofilms present on the surfaces of aquifer rock, rather than by planktonic bacteria. A simplified bacterial community, which was able to degrade monoaromatic hydrocarbons at atmospheric pressure over several months, was selected for incubation experiments at in situ pressure (i.e., 90bar). These showed that the abundance of various bacterial genera was altered, while taxonomic diversity was mostly unchanged. The candidate phylum Acetothermia was characteristic of the community incubated at 90bar. This work suggests that even if pressures on the order of 90bar do not seem to select for obligate piezophilic organisms, modifications of the thermodynamic equilibria could favor different microbial assemblages from those observed at atmospheric pressure.
RESUMO
Karst caves have recently been demonstrated to act as a sink for atmospheric methane, due in part to consumption by microbes residing in caves that can oxidize methane at atmospheric levels. However, our knowledge about the responsible atmospheric methane-oxidizing bacteria (atmMOB) in this vast habitat remains limited to date. To address this issue, weathered rock samples from three karst caves were collected in Guilin City and subjected to high-throughput sequencing of pmoA and 16S rRNA genes. The results showed that members of the high-affinity upland soil cluster (USC), especially upland soil cluster gamma (USCγ), with absolute abundances of 104 to 109 copies · g-1 dry sample, dominated the atmMOB communities, while Proteobacteria and Actinobacteria dominated the overall bacterial communities. Moreover, USCγ was a keystone taxon in cooccurrence networks of both the atmMOB and the total bacterial community, whereas keystone taxa in the bacterial network also included Gaiella and Aciditerrimonas. Positive links overwhelmingly dominated the cooccurrence networks of both atmMOB and the total bacterial community, indicating a consistent response to environmental disturbances. Our study shed new insights on the diversity and abundances underlining atmMOB and total bacterial communities and on microbial interactions in subterranean karst caves, which increased our understanding about USC and supported karst caves as a methane sink. IMPORTANCE Karst caves have recently been demonstrated to be a potential atmospheric methane sink, presumably due to consumption by methane-oxidizing bacteria. However, the sparse knowledge about the diversity, distribution, and community interactions of methanotrophs requires us to seek further understanding of the ecological significance of methane oxidation in these ecosystems. Our pmoA high-throughput results from weathered rock samples from three karst caves in Guilin City confirm the wide occurrence of atmospheric methane-oxidizing bacteria in this habitat, especially those affiliated with the upland soil cluster, with a gene copy number of 104 to 109 copies per gram dry sample. Methanotrophs and the total bacterial communities had more positive than negative interactions with each other as indicated by the cooccurrence network, suggesting their consistent response to environmental disturbance. Our results solidly support caves as an atmospheric methane sink, and they contribute to a comprehensive understanding of the diversity, distribution, and interactions of microbial communities in subsurface karst caves.
Assuntos
Bactérias/isolamento & purificação , Cavernas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/genética , Metano/análise , Metano/metabolismo , Microbiota , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
Energy derived from water-rock interactions such as serpentinization and radiolysis, among others, can sustain microbial ecosystems deep within the continental crust, expanding the habitable biosphere kilometers below the earth's surface. Here, we describe a viable microbial community including sulfate-reducing microorganisms from one such subsurface lithoautotrophic ecosystem hosted in fracture waters in the Canadian Shield, 2.4 km below the surface in the Kidd Creek Observatory in Timmins, Ontario. The ancient groundwater housed in fractures in this system was previously shown to be rich in abiotically produced hydrogen, sulfate, methane, and short-chain hydrocarbons. We have further investigated this system by collecting filtered water samples and deploying sterile in situ biosampler units into boreholes to provide an attachment surface for the actively growing fraction of the microbial community. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and DNA sequencing analyses were undertaken to classify the recovered microorganisms. Moderately halophilic taxa (e.g., Marinobacter, Idiomarina, Chromohalobacter, Thiobacillus, Hyphomonas, Seohaeicola) were recovered from all sampled boreholes, and those boreholes that had previously been sealed to equilibrate with the fracture water contained taxa consistent with sulfate reduction (e.g., Desulfotomaculum) and hydrogen-driven homoacetogenesis (e.g., Fuchsiella). In contrast to this "corked" borehole that has been isolated from the mine environment for approximately 7 years at the time of sampling, we sampled additional open boreholes. The waters flowing freely from these open boreholes differ from those of the long-sealed borehole. This work complements ongoing efforts to describe the microbial diversity in fracture waters at Kidd Creek in order to better understand the processes shaping life in the deep terrestrial subsurface. In particular, this work demonstrates that anaerobic bacteria and known halophilic taxa are present and viable in the fracture waters presently outflowing from existing boreholes. Major cations and anions found in the fracture waters at the 2.4 km level of the mine are also reported.
RESUMO
Formation of microtubules in volcanic glass from subsurface environments has been widely attributed to in situ activity of micro-organisms, but evidence directly linking those structures to biological processes remains lacking. Investigations into the alternative possibility of abiotic tubule formation have been limited. A laboratory experiment was conducted to examine whether moderate-temperature hydrothermal alteration of basaltic glass by seawater would produce structures similar to those ascribed to biological processes. Shards of glass were reacted with artificial seawater at 150°C for 48 days. Following reaction, the shards were uniformly covered with a brick-red alteration rind 10-30 µm thick composed primarily of phyllosilicates. Inspection of the margins of reacted shards with light microscopy did not reveal any tubule structures. However, the alteration products did include features containing micron-sized spheroidal structures that resemble granular alteration textures, which some investigators have attributed to biological activity. This result suggests that the granular textures may be at least partially abiotic, and that biological activity may make a smaller contribution to alteration of the oceanic crust than has been previously proposed. Also, while the experimental results do not exclude the possibility that tubules form abiotically, they do place limitations on the conditions under which this may occur.
Assuntos
Vidro/química , Silicatos/química , Exobiologia , Oceanos e MaresRESUMO
Submarine mud volcanoes (MVs) along continental margins emit mud breccia and globally significant amounts of hydrocarbon-rich fluids from the subsurface, and host distinct chemosynthetic communities of microbes and macrofauna. Venere MV lies at 1,600 m water depth in the Ionian Sea offshore Italy and is located in a forearc basin of the Calabrian accretionary prism. Porewaters of recently extruded mud breccia flowing from its west summit are considerably fresher than seawater (10 PSU), high in Li+ and B (up to 300 and 8,000 µM, respectively), and strongly depleted in K+ (<1 mM) at depths as shallow as 20 cm below seafloor. These properties document upward transport of fluids sourced from >3 km below seafloor. 16S rRNA gene and metagenomic sequencing were used to characterize microbial community composition and gene content within deep-sourced mud breccia flow deposits as they become exposed to seawater along a downslope transect of Venere MV. Summit samples showed consistency in microbial community composition. However, beta-diversity increased markedly in communities from downslope cores, which were dominated by methyl- and methanotrophic genera of Gammaproteobacteria. Methane, sulfate, and chloride concentrations were minor but significant contributors to variation in community composition. Metagenomic analyses revealed differences in relative abundances of predicted protein categories between Venere MV and other subsurface microbial communities, characterizing MVs as windows into distinct deep biosphere habitats.
RESUMO
Recent advances in high-throughput sequencing (HTS) technologies have revolutionized our understanding of microbial diversity and composition in relation to their environment. HTS-based characterization of metabolically active (RNA-derived) and total (DNA-derived) fungal communities in different terrestrial habitats has revealed profound differences in both richness and community compositions. However, such DNA- and RNA-based HTS comparisons are widely missing for fungal communities of groundwater aquifers in the terrestrial biogeosphere. Therefore, in this study, we extracted DNA and RNA from groundwater samples of two pristine aquifers in the Hainich CZE and employed paired-end Illumina sequencing of the fungal nuclear ribosomal internal transcribed spacer 2 (ITS2) region to comprehensively test difference/similarities in the "total" and "active" fungal communities. We found no significant differences in the species richness between the DNA- and RNA-derived fungal communities, but the relative abundances of various fungal operational taxonomic units (OTUs) appeared to differ. We also found the same set of environmental parameters to shape the "total" and "active" fungal communities in the targeted aquifers. Furthermore, our comparison also underlined that about 30%-40% of the fungal OTUs were only detected in RNA-derived communities. This implies that the active fungal communities analyzed by HTS methods in the subsurface aquifers are actually not a subset of supposedly total fungal communities. In general, our study highlights the importance of differentiating the potential (DNA-derived) and expressed (RNA-derived) members of the fungal communities in aquatic ecosystems.
RESUMO
The subsurface biosphere is a massive repository of fixed carbon, harboring approximately 90% of Earth's microbial biomass. These microbial communities drive transformations central to Earth's biogeochemical cycles. However, there is still much we do not understand about how complex subterranean microbial communities survive and how they interact with these cycles. Recent metagenomic investigation of deeply circulating terrestrial subsurface fluids revealed the presence of several novel lineages of bacteria. In one particular example, phylogenomic analyses do not converge on any one previously identified taxon; here we describe the first full genomic sequences of a new bacterial lineage within the candidate phylum Hydrogenedentes, 'Candidatus Abyssubacteria.' A global survey revealed that members of this proposed lineage are widely distributed in both marine and terrestrial subsurface environments, but their physiological and ecological roles have remained unexplored. Two high quality metagenome assembled genomes (SURF_5: 97%, 4%; SURF_17: 91% and 4% completeness and contamination, respectively) were reconstructed from fluids collected 1.5 kilometers below surface in the former Homestake gold mine-now the Sanford Underground Research Facility (SURF)-in Lead, South Dakota, United States. Metabolic reconstruction suggests versatile metabolic capability, including possible nitrogen reduction, sulfite oxidation, sulfate reduction and homoacetogenesis. This first glimpse into the metabolic capabilities of these cosmopolitan bacteria suggests that they are involved in key geochemical processes, including sulfur, nitrogen, and carbon cycling, and that they are adapted to survival in the dark, often anoxic, subsurface biosphere.