Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 105(4): 803-811, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29710426

RESUMO

PREMISE OF THE STUDY: Understanding resource allocation to reproduction, a key factor in life history tradeoffs, has long intrigued plant ecologists. Despite the recognized importance of understanding the movement of resources among flowers following variable pollination, the patterns of resource reallocation to plant reproductive organs have not been thoroughly addressed. In this study, we aimed to empirically explore how resources redistribute within inflorescences in response to differential pollination intensities. METHODS: Using a common herb, Sagittaria trifolia, we conducted supplemental and controlled pollination for single, some, or all flowers in simple and complex inflorescences, and compared their resulting fruiting probabilities, seed production, and average seed masses. KEY RESULTS: Pollen supplementation of a single flower significantly increased its fruiting probability; however, the same manipulation of an inflorescence did not increase its overall reproduction. Single pollen-supplemented flowers had a higher percentage fruit set than inflorescences receiving supplemental pollination. In complex inflorescences, supplemental pollination had no effect on the reproductive success of flowers on the lateral or main branches. CONCLUSIONS: We provided evidence of resource reallocation from controlled to pollen-supplemented flowers in simple inflorescences; however, resources were unlikely to be reallocated between the main and lateral branches in the complex inflorescences, suggesting that flowering branches represent integrated physiological units in S. trifolia. The results also demonstrated that single-flower supplemental pollination would exaggerate pollen limitation and lead to a biased understanding of a plant's reproductive status.


Assuntos
Flores/fisiologia , Polinização/fisiologia , Sagittaria/fisiologia , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Reprodução , Sagittaria/crescimento & desenvolvimento , Sagittaria/metabolismo , Sementes/crescimento & desenvolvimento
2.
Am J Bot ; 105(11): 1835-1846, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30376158

RESUMO

PREMISE OF THE STUDY: Plants often interact simultaneously with multiple antagonists and mutualists that can alter plant traits at the phenotypic or genetic level, subsequent plant-insect interactions, and reproduction. Although many studies have examined the effects of single floral antagonisms on subsequent pollination and plant reproduction, we know very little about the combined, potentially non-additive effects of multiple flower-insect interactions. METHODS: We simulated increased florivory, nectar robbing, and pollination on field-grown Impatiens capensis, which allowed us to determine interactive effects on five subsequent plant-insect interactions and 16 plant traits, including traits related to plant growth, floral attractiveness, floral defenses, and plant reproduction. KEY RESULTS: All three manipulative treatments had significant non-additive effects on the behavior of subsequent floral visitors, indicating that the effect of floral visitors generally depended on the presence or behavior of others. Pollination increased visitation by both pollinators and nectar larcenists (robbers and thieves), while florivory reduced pollinator and larcenist visits. Surprisingly, supplemental pollination also increased leaf herbivory. Florivores often responded to manipulations in opposite ways than did nectar larcenists and pollinators, suggesting different mechanisms influencing visitors that consume nectar compared to floral tissue. While our treatments did not affect any floral trait measured, they non-additively impacted plant reproduction, with florivory having a larger overall impact than either nectar robbing or pollination. CONCLUSIONS: These results emphasize the importance of understanding the context in which flower-insect interactions occur because the composition of the interacting community can have large and non-additive impacts on subsequent insect behavior and plant reproduction.


Assuntos
Flores/fisiologia , Herbivoria , Impatiens/fisiologia , Animais , Insetos , Reprodução
3.
AoB Plants ; 62014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24916060

RESUMO

For many species of conservation significance, multiple factors limit reproduction. This research examines the contributions of plant height, number of flowers, number of stems, pollen limitation and seed predation to female reproductive success in the deceit-pollinated orchid, Cypripedium candidum. The deceptive pollination strategy employed by many orchids often results in high levels of pollen limitation. While increased floral display size may attract pollinators, C. candidum's multiple, synchronously flowering stems could promote selfing and also increase attack by weevil seed predators. To understand the joint impacts of mutualists and antagonists, we examined pollen limitation, seed predation and the effects of pollen source over two flowering seasons (2009 and 2011) in Ohio. In 2009, 36 pairs of plants size-matched by flower number, receiving either supplemental hand or open pollination, were scored for fruit maturation, mass of seeds and seed predation. Pollen supplementation increased proportion of flowers maturing into fruit, with 87 % fruit set when hand pollinated compared with 46 % for naturally pollinated flowers. Inflorescence height had a strong effect, as taller inflorescences had higher initial fruit set, while shorter stems had higher predation. Seed predation was seen in 73 % of all fruits. A parallel 2011 experiment that included a self-pollination treatment and excluded seed predators found initial and final fruit set were higher in the self and outcross pollination treatments than in the open-pollinated treatment. However, seed mass was higher in both open pollinated and outcross pollination treatments compared with hand self-pollinated. We found greater female reproductive success for taller flowering stems that simultaneously benefited from increased pollination and reduced seed predation. These studies suggest that this species is under strong reinforcing selection to increase allocation to flowering stem height. Our results may help explain the factors limiting seed production in other Cypripedium and further emphasize the importance of management in orchid conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA