Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sensors (Basel) ; 19(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003527

RESUMO

The acoustic emission (AE) technique is one of the unconventional methods of partial discharges (PD) detection. It plays a particularly important role in oil-filled power transformers diagnostics because it enables the detection and online monitoring of PDs as well as localization of their sources. The performance of this technique highly depends on measurement system configuration but mostly on the type of applied AE sensor. The paper presents, in detail, the design and manufacturing stages of an ultrasensitive AE sensor optimized for partial discharge detection in power transformers. The design assumptions were formulated based on extensive laboratory research, which allowed for the identification of dominant acoustic frequencies emitted by partial discharges in oil-paper insulation. The Krimholtz-Leedom-Matthaei (KLM) model was used to iteratively find optimal material and geometric properties of the main structures of the prototype AE sensor. It has two sensing elements with opposite polarization direction and different heights. The fully differential design allowed to obtain the desired properties of the transducer, i.e., a two-resonant (68 kHz and 90 kHz) and wide (30‒100 kHz) frequency response curve, high peak sensitivity (-61.1 dB ref. V/µbar), and low noise. The laboratory tests confirmed that the prototype transducer is characterized by ultrahigh sensitivity of partial discharge detection. Compared to commonly used commercial AE sensors, the average amplitude of PD pulses registered with the prototype sensor was a minimum of 5.2 dB higher, and a maximum of 19.8 dB higher.

2.
J Hazard Mater ; 476: 134984, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38943891

RESUMO

As well known, surface discharge cold plasma has efficient inactivation ability and a variety of RONS are main active particles for inactivation, but their synergistic mechanism is still not clear. Therefore, surface discharge cold plasma system was applied to treat Pseudomonas fluorescens to study bacterial inactivation mechanism and energy benefit. Results showed that energy efficiency was directly proportional to applied voltage and inversely proportional to initial concentration. Cold plasma treatment for 20 min was inactivated by approximately > 4-log10Pseudomonas fluorescens and application of •OH and 1O2 scavengers significantly improved survival rate. In addition, •OH and 1O2 destroyed cell membrane structure and membrane permeability, which promoted diffusion of RONS into cells and affecting energy metabolism and antioxidant capacity, leading to bacterial inactivation. Furthermore, accumulation of intracellular NO and ONOOH was related to infiltration of exogenous RNS, while accumulation of •OH, H2O2, 1O2, O2- was the result of joint action of endogenous and exogenous ROS. Transcriptome analysis revealed that different RONS of cold plasma were responsible for Pseudomonas fluorescens inactivation and related to activation of intracellular antioxidant defense system and regulation of genes expression related to amino acid metabolism and energy metabolism, which promoting cellular process, catalytic activity and other biochemical pathways.


Assuntos
Gases em Plasma , Pseudomonas fluorescens , Espécies Reativas de Oxigênio , Pseudomonas fluorescens/metabolismo , Gases em Plasma/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Microbiologia da Água , Viabilidade Microbiana/efeitos dos fármacos
3.
Discov Nano ; 19(1): 93, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802660

RESUMO

In this paper, smart integration of cold dielectric barrier discharge (DBD) plasma in various geometrical arrangements with laser ablation at atmospheric pressure for nanomaterial was described. A composite Co:ZnO target was ablated in an airflow by a nanosecond (ns) laser (wavelength: 1064 nm, pulse duration: 30 ns) using fluence of 5 J-cm-2 at a repetition rate of 10 Hz. The nanomaterial produced under vertical and oblique plasma streams, surface discharge and gas flow, were compared. Utilization surface discharge markedly improved the material adhesion by altering surface intrinsic behavior, inducing anticipated surface energy activation, chemical changes, and the formation of a densely packed solid structure. Under all conditions, the material consistently retained its crystalline nature, elemental composition, and ultraviolet emission characteristics. These preliminary findings hold promise for additional research, suggesting avenues for making complex materials in a flexible environment. Such new advancements could facilitate applications in the biomedical, catalysis, pharmaceutical, and surgical device domains.

4.
Microorganisms ; 11(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512847

RESUMO

Aquifer systems are composed of water flowing from surface recharge areas, to the subsurface and back to the surface in discharge regions. Groundwater habitats harbor a large microbial biomass and diversity, potentially contributing to surface aquatic ecosystems. Although this contribution has been widely studied in marine environments, very little is known about the connection between underground and surface microbial communities in freshwater settings. Therefore, in this study, we used amplicon sequencing to analyze the archaeal, bacterial, and eukaryotic community diversity and structure in groundwater and surface water samples, spanning the vast regions of the Laurentides and Lanaudières in the Quebec province (Canada). Our results show significant differences between subsurface and surface taxa; with more fungi, Amoebozoa, and chemolithoautotrophic prokaryotes involved in nitrogen-, sulfur-, and iron-cycling dominating the underground samples; while algae, ciliates, methanogens, and Actinobacteria dominate the surface discharge waters. Microbial source tracking suggested that only a small portion of the microbial communities in the groundwater contributed to the surface discharge communities. However, many taxa were shared between both habitats, with a large range of functional diversity, likely explaining their survival in both subsurface and surface water ecosystems.

5.
Polymers (Basel) ; 15(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36850074

RESUMO

Composite insulators have gradually become the preferred approach for electrical insulation in power systems, especially in polluted areas. Composite insulators consist of three main components: the shed, rod, and end fitting. Insulators withstand mechanical stresses via rods that are composed of glass-fiber-reinforced epoxy (GFRE). However, regardless of the high tensile strength of GFRE rods, in real-life operation, abnormal fractures have frequently been reported all over the world, which substantially increase the risk of major accidents in power systems. Fractural accidents mainly consist of brittle and decay-like fractures, which exhibit rather different morphologies at the cross sections. Brittle fracture has been effectively eliminated, while the mechanism of decay-like fracture has still not been clearly revealed. In this study, surface discharge tests were applied to investigate the discharge influence on the degradation of GFRE. The test successfully simulated the composition variation of the rods in real-life composite insulators with decay-like fractures. Moreover, it confirmed that the distinction between the characteristics of brittle fracture and decay-like fracture stems from epoxy degradation due to hydrolysis and carbonization. In addition, the respective influences of the resin type, glass fiber type, and acid liquid immersion on the degradation process were probed, and the degradation mechanism proposed in this research was verified. Based on the results, measures for preventing the development of decay-like fractures in real-life operations were determined.

6.
Sci Total Environ ; 823: 153634, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149059

RESUMO

1,4-Dioxane released at the Gelman Site in Washtenaw County, Michigan, produced a series of contaminant plumes migrating up to 3 km through a heterogenous glacial aquifer system. An analysis of 1,4-dioxane concentrations in the Eastern Area of the Gelman Site between 2011 and 2017 documented a mass balance deficit of 2200 kg in excess of 2100 kg of 1,4-dioxane removed via remediation. Five mechanisms were evaluated to account for the mass deficiency: sorption, matrix diffusion, biodegradation, surface discharge, and bypass of the existing monitoring well network. The mass of 1,4-dioxane sorbed to aquifer and aquitard materials and the mass of 1,4-dioxane diffused into low permeability zones were estimated. However, decreasing aqueous concentrations across most of the contaminated area between 2011 and 2017 are expected to induce desorption and back diffusion during this period. Surface water discharge to a storm drain in the downgradient portion of the site was analyzed using concentration measurements and stream gage data. Results suggest that 1,4-dioxane mass entering the drain during the period between 2011 and 2017 was insufficient to account for the mass deficiency. Although available geochemical measurements indicate predominantly anaerobic aquifer conditions at the Gelman Site, biodegradation of 1,4-dioxane was estimated using first order decay rate constants from other sites where conditions may be more favorable. Results suggest that biodegradation could explain some but not all of the missing mass. Bypass of the downgradient monitoring well network is the most parsimonious explanation for the 1,4-dioxane mass deficit. This conclusion is supported by documented flow path complexity through the aquifer system and the sparse density of monitoring wells in the downgradient Eastern Area. These findings underscore the importance of characterizing aquifer heterogeneity when modeling and remediating persistent groundwater contaminants such as 1,4-dioxane.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Dioxanos/análise , Água Subterrânea/química , Michigan , Poluentes Químicos da Água/análise
7.
Biomaterials ; 276: 121057, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399120

RESUMO

Post-surgical residual tumor cells are the primary cause of relapse and progression of cancer but unfortunately, there are limited therapeutic options. In this work, a fillable plasma-activated biogel is produced on a thermosensitive biogel [(Poly-DL-lactide)-(poly-ethylene glycol)-(poly-DL-lactide), PLEL] with the aid of a discharge plasma for local post-operative treatment of cancer. In vivo data show that the plasma-activated PLEL biogel (PAPB) eliminates residual tumor tissues after removal surgery and also inhibits in situ recurrence while showing no evident systemic toxicity. Moreover, the PAPB possesses excellent storage capability, allows for slow release of plasma-generated reactive oxygen species (ROS), and exhibits good ROS-mediated anticancer effects in vitro. Our results reveal that the novel plasma-activated biogel is an effective therapeutic agent for local post-operative treatment of cancer.


Assuntos
Hidrogéis , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio
8.
J Hazard Mater ; 357: 279-288, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29894928

RESUMO

Plasticizer pollution brought huge risks to ecological environment and human health. Surface discharge plasma (SDP) was employed to eliminate plasticizer in natural water, with dimethyl phthalate (DMP) as a typical plasticizer. Experimental results showed that DMP degradation efficiency reached 82.8% within 60 min's SDP treatment, and the elimination process fitted well the first-order kinetic model. Low initial DMP concentration, alkaline condition, and low natural organic matter content were all conducive for DMP degradation. The contributions of OH radical and O2- to DMP elimination were 91.9% and 78.1%, respectively. Total organic carbon (TOC), UV-vis spectroscopy, and atomic force microscopy analysis demonstrated that DMP molecular structure was destroyed after the SDP treatment, and some small molecular fractions were generated. Approximately 47.8% of TOC and 73.5% of COD were eliminated after 60 min's SDP treatment. Phthalic acid monomethyl ester, phthalic acid, o-phthalic anhydride, acetic acid, formic acid, and oxalic acid were detected as the byproducts. Carbon balance analysis among these intermediates showed that total carbon content was approximately 4.64 × 10-2 mmol before treatment, and it was 4.578 × 10-2 mmol after treatment, suggesting that some C-containing intermediates still existed but not detected. DMP degradation pathways in the SDP system were proposed.

9.
J Hazard Mater ; 357: 305-313, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29902725

RESUMO

This paper mainly deals with the isovaleraldehyde degradation with the help of a nonthermal plasma surface discharge (NPSD) coupled with photocatalysis. The efficiency of NPSD reactor, for gas treatment, was studied for different binary mixtures: (1) mixture of aldehydes (Isovaleraldehyde and Butyraldehyde) and (2) mixture of aldehyde and amine (Isovaleraldehyde and Trimethylamine). A planar continuous reactor is used to investigate the effect of addition of another pollutant on the performance of oxidation process. A synergetic effect was observed by combining NPSD and photocatalysis for the degradation of mixture of pollutants. In addition, combined NPSD/photocatalysis has significantly enhanced the CO2 selectivity, as compared to NPSD alone. This is attributed to the formation of more reactive species due to the presence of TiO2 in the plasma discharge zone. Moreover, ozone and UV light on TiO2, produced by plasma, have activated the surface leading to enhanced mineralization. In addition, the byproducts of each binary mixture were identified and evaluated.

10.
Environ Sci Pollut Res Int ; 24(27): 21591-21600, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28748439

RESUMO

Surface discharge plasma (SDP) combined with activated carbon (AC) was employed to eliminate dissolved organic matter from micro-polluted source water, with humic acid (HA) as the model pollutant. Synergistic effect on HA removal was observed in the SDP-AC system; HA removal efficiency reached 60.9% within 5-min treatment in the SDP-AC system with 5.0 g AC addition, whereas 16.7 and 17.4% of HA were removed in sole SDP system and AC adsorption, respectively. Scanning electron microscope and Boehm titration analysis showed that chemical reactions between active species and functional groups of AC occurred. The existence of isopropanol or benzoquinone exhibited inhibitive effects on HA removal in the SDP system, while these inhibitive effects were weakened in the SDP-AC system. The influences of AC on ozone equivalent concentration and H2O2 concentration were evaluated, and there were approximately 39 and 20% decline in ozone equivalent concentration and H2O2 concentration within 6-min treatment in the SDP-AC system, respectively, compared with those in the sole SDP system. Dissolved organic carbon, specific ultraviolet absorbance, and UV absorption ratios analysis demonstrated that the SDP treatment destroyed the chromophoric groups, double bonds, and aromatic structure of HA molecules, and these destructive actions were strengthened by AC.


Assuntos
Carvão Vegetal/química , Substâncias Húmicas/análise , Gases em Plasma , Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Peróxido de Hidrogênio/química , Ozônio/química
11.
J Hazard Mater ; 302: 65-71, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26444488

RESUMO

A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed.


Assuntos
Compostos Azo/química , Ácidos Carboxílicos/química , Naftalenos/química , Poluentes Químicos da Água/química , Técnicas Eletroquímicas , Gases em Plasma
12.
Water Res ; 89: 28-38, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26624519

RESUMO

Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água/química , Purificação da Água/métodos , Desinfecção , Água Doce/química , Halogenação , Concentração de Íons de Hidrogênio , Radical Hidroxila , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Trialometanos/química , Raios Ultravioleta
13.
Sci Total Environ ; 536: 391-405, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231769

RESUMO

Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s. We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates, we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

14.
J Hazard Mater ; 268: 237-45, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24513449

RESUMO

The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg(0)) in simulated flue gas at 110°C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg(0) was oxidized and 20.5µgkJ(-1) of energy yield was obtained at a rate of 3.9JL(-1). A maximal Hg(0) oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg(0) oxidation efficiency was observed in the mixed flue gas that included O2, H2O, SO2, NO and HCl. Chemical and physical processes (e.g., ozone, N2 metastable states and UV-light) were found to contribute to Hg(0) oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Recuperação e Remediação Ambiental/métodos , Incineração , Mercúrio/isolamento & purificação , Modelos Químicos , Gases em Plasma/química , Poluentes Atmosféricos/química , Carvão Mineral , Recuperação e Remediação Ambiental/instrumentação , Desenho de Equipamento , Mercúrio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA