Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(39): e2411981121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284057

RESUMO

Bacterial biofilms have been implicated in several chronic infections. After initial attachment, a critical first step in biofilm formation is a cell inducing a surface-sensing response. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, two second messengers, cyclic diguanylate monophosphate (c-di-GMP) and cyclic adenosine monophosphate (cAMP), are produced by different surface-sensing mechanisms. However, given the disparate cellular behaviors regulated by these second messengers, how newly attached cells coordinate these pathways remains unclear. Some of the uncertainty relates to studies using different strains, experimental systems, and usually focusing on a single second messenger. In this study, we developed a tricolor reporter system to simultaneously gauge c-di-GMP and cAMP levels in single cells. Using PAO1, we show that c-di-GMP and cAMP are selectively activated in two commonly used experimental systems to study surface sensing. By further examining the conditions that differentiate a c-di-GMP or cAMP response, we demonstrate that an agarose-air interface activates cAMP signaling through type IV pili and the Pil-Chp system. However, a liquid-agarose interface favors the activation of c-di-GMP signaling. This response is dependent on flagellar motility and correlated with higher swimming speed. Collectively, this work indicates that c-di-GMP and cAMP signaling responses are dependent on the surface context.


Assuntos
Biofilmes , AMP Cíclico , GMP Cíclico , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Biofilmes/crescimento & desenvolvimento , Transdução de Sinais , Sistemas do Segundo Mensageiro/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
2.
Mol Microbiol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096095

RESUMO

FliL is a bacterial flagellar protein demonstrated to associate with, and regulate ion flow through, the stator complex in a diverse array of bacterial species. FliL is also implicated in additional functions such as stabilizing the flagellar rod, modulating rotor bias, sensing the surface, and regulating gene expression. How can one protein do so many things? Its location is paramount to understanding its numerous functions. This review will look at the evidence, attempt to resolve some conflicting findings, and offer new thoughts on FliL.

3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131853

RESUMO

Bacterial cells interact with solid surfaces and change their lifestyle from single free-swimming cells to sessile communal structures (biofilms). Cyclic di-guanosine monophosphate (c-di-GMP) is central to this process, yet we lack tools for direct dynamic visualization of c-di-GMP in single cells. Here, we developed a fluorescent protein-based c-di-GMP-sensing system for Escherichia coli that allowed us to visualize initial signaling events and assess the role played by the flagellar motor. The sensor was pH sensitive, and the events that appeared on a seconds' timescale were alkaline spikes in the intracellular pH. These spikes were not apparent when signals from different cells were averaged. Instead, a signal appeared on a minutes' timescale that proved to be due to an increase in intracellular c-di-GMP. This increase, but not the alkaline spikes, depended upon a functional flagellar motor. The kinetics and the amplitude of both the pH and c-di-GMP responses displayed cell-to-cell variability indicative of the distinct ways the cells approached and interacted with the surface. The energetic status of a cell can modulate these events. In particular, the alkaline spikes displayed an oscillatory behavior and the c-di-GMP increase was modest in the presence of glucose.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transdução de Sinais/fisiologia , GMP Cíclico/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Vidro , Concentração de Íons de Hidrogênio , Sistemas do Segundo Mensageiro/fisiologia , Propriedades de Superfície
4.
Proc Natl Acad Sci U S A ; 119(20): e2119434119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561220

RESUMO

The ability of eukaryotic cells to differentiate surface stiffness is fundamental for many processes like stem cell development. Bacteria were previously known to sense the presence of surfaces, but the extent to which they could differentiate stiffnesses remained unclear. Here we establish that the human pathogen Pseudomonas aeruginosa actively measures surface stiffness using type IV pili (TFP). Stiffness sensing is nonlinear, as induction of the virulence factor regulator is peaked with stiffness in a physiologically important range between 0.1 kPa (similar to mucus) and 1,000 kPa (similar to cartilage). Experiments on surfaces with distinct material properties establish that stiffness is the specific biophysical parameter important for this sensing. Traction force measurements reveal that the retraction of TFP is capable of deforming even stiff substrates. We show how slow diffusion of the pilin PilA in the inner membrane yields local concentration changes at the base of TFP during extension and retraction that change with substrate stiffness. We develop a quantitative biomechanical model that explains the transcriptional response to stiffness. A competition between PilA diffusion in the inner membrane and a loss/gain of monomers during TFP extension/retraction produces substrate stiffness-dependent dynamics of the local PilA concentration. We validated this model by manipulating the ATPase activity of the TFP motors to change TFP extension and retraction velocities and PilA concentration dynamics, altering the stiffness response in a predictable manner. Our results highlight stiffness sensing as a shared behavior across biological kingdoms, revealing generalizable principles of environmental sensing across small and large cells.


Assuntos
Proteínas de Fímbrias , Fímbrias Bacterianas , Pseudomonas aeruginosa , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/fisiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Propriedades de Superfície , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 119(18): e2117633119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476526

RESUMO

Surface sensing is a critical process that promotes the transition to a biofilm lifestyle. Several surface-sensing mechanisms have been described for a range of species, most involving surface appendages, such as flagella and pili. Pseudomonas aeruginosa uses the Wsp chemosensory-like signal transduction pathway to sense surfaces and promote biofilm formation. The methyl-accepting chemotaxis protein WspA recognizes an unknown surface-associated signal and initiates a phosphorylation cascade that activates the diguanylate cyclase WspR. We conducted a screen for Wsp-activating compounds and found that chemicals that impact the cell envelope induce Wsp signaling, increase intracellular c-di-GMP levels, and can promote surface attachment. To isolate the Wsp system from other P. aeruginosa surface-sensing systems, we heterologously expressed it in Escherichia coli and found it sufficient for sensing surfaces and the chemicals identified in our screen. Using well-characterized reporters for different E. coli cell envelope stress responses, we then determined that Wsp sensitivity overlapped with multiple E. coli cell envelope stress-response systems. Using mutational and CRISPRi analysis, we found that misfolded proteins in the periplasm appear to be a major stimulus of the Wsp system. Finally, we show that surface attachment appears to have an immediate, observable effect on cell envelope integrity. Collectively, our results provide experimental evidence that cell envelope stress represents an important feature of surface sensing in P. aeruginosa.


Assuntos
Parede Celular , Pseudomonas aeruginosa , Biofilmes , Membrana Celular/metabolismo , Periplasma , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064082

RESUMO

Work on surface sensing in bacterial biofilms has focused on how cells transduce sensory input into cyclic diguanylate (c-di-GMP) signaling, low and high levels of which generally correlate with high-motility planktonic cells and low-motility biofilm cells, respectively. Using Granger causal inference methods, however, we find that single-cell c-di-GMP increases are not sufficient to imply surface commitment. Tracking entire lineages of cells from the progenitor cell onward reveals that c-di-GMP levels can exhibit increases but also undergo oscillations that can propagate across 10 to 20 generations, thereby encoding more complex instructions for community behavior. Principal component and factor analysis of lineage c-di-GMP data shows that surface commitment behavior correlates with three statistically independent composite features, which roughly correspond to mean c-di-GMP levels, c-di-GMP oscillation period, and surface motility. Surface commitment in young biofilms does not correlate to c-di-GMP increases alone but also to the emergence of high-frequency and small-amplitude modulation of elevated c-di-GMP signal along a lineage of cells. Using this framework, we dissect how increasing or decreasing signal transduction from wild-type levels, by varying the interaction strength between PilO, a component of a principal surface sensing appendage system, and SadC, a key hub diguanylate cyclase that synthesizes c-di-GMP, impacts frequency and amplitude modulation of c-di-GMP signals and cooperative surface commitment.


Assuntos
Fenômenos Fisiológicos Bacterianos , GMP Cíclico/análogos & derivados , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Mutação , Ligação Proteica , Pseudomonas aeruginosa/fisiologia
7.
J Bacteriol ; 206(7): e0044223, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-38832786

RESUMO

Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.


Assuntos
Fímbrias Bacterianas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , AMP Cíclico/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34168081

RESUMO

To initiate biofilm formation, it is critical for bacteria to sense a surface and respond precisely to activate downstream components of the biofilm program. Type 4 pili (T4P) and increasing levels of c-di-GMP have been shown to be important for surface sensing and biofilm formation, respectively; however, mechanisms important in modulating the levels of this dinucleotide molecule to define a precise output response are unknown. Here, using macroscopic bulk assays and single-cell tracking analyses of Pseudomonas aeruginosa, we uncover a role of the T4P alignment complex protein, PilO, in modulating the activity of the diguanylate cyclase (DGC) SadC. Two-hybrid and bimolecular fluorescence complementation assays, combined with genetic studies, are consistent with a model whereby PilO interacts with SadC and that the PilO-SadC interaction inhibits SadC's activity, resulting in decreased biofilm formation and increased motility. Using single-cell tracking, we monitor both the mean c-di-GMP and the variance of this dinucleotide in individual cells. Mutations that increase PilO-SadC interaction modestly, but significantly, decrease both the average and variance in c-di-GMP levels on a cell-by-cell basis, while mutants that disrupt PilO-SadC interaction increase the mean and variance of c-di-GMP levels. This work is consistent with a model wherein P. aeruginosa uses a component of the T4P scaffold to fine-tune the levels of this dinucleotide signal during surface commitment. Finally, given our previous findings linking SadC to the flagellar machinery, we propose that this DGC acts as a bridge to integrate T4P and flagellar-derived input signals during initial surface engagement.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/fisiologia , Motivos de Aminoácidos , Sequência Conservada , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Mutação/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Análise de Célula Única , Sistemas de Secreção Tipo IV
9.
J Bacteriol ; 205(7): e0017923, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37382531

RESUMO

Biofilm formation begins when bacteria contacting a surface induce cellular changes to become better adapted for surface growth. One of the first changes to occur for Pseudomonas aeruginosa after surface contact is an increase in the nucleotide second messenger 3',5'-cyclic AMP (cAMP). It has been demonstrated that this increase in intracellular cAMP is dependent on functional type IV pili (T4P) relaying a signal to the Pil-Chp system, but the mechanism by which this signal is transduced remains poorly understood. Here, we investigate the role of the type IV pilus retraction motor PilT in sensing a surface and relaying that signal to cAMP production. We show that mutations in PilT, and in particular those impacting the ATPase activity of this motor protein, reduce surface-dependent cAMP production. We identify a novel interaction between PilT and PilJ, a member of the Pil-Chp system, and propose a new model whereby P. aeruginosa uses its PilT retraction motor to sense a surface and to relay that signal via PilJ to increased production of cAMP. We discuss these findings in light of current T4P-dependent surface sensing models for P. aeruginosa. IMPORTANCE T4P are cellular appendages that allow P. aeruginosa to sense a surface, leading to the production of cAMP. This second messenger not only activates virulence pathways but leads to further surface adaptation and irreversible attachment of cells. Here, we demonstrate the importance of the retraction motor PilT in surface sensing. We also present a new surface sensing model in P. aeruginosa whereby the T4P retraction motor PilT senses and transmits the surface signal, likely via its ATPase domain and interaction with PilJ, to mediate production of the second messenger cAMP.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Pseudomonas aeruginosa/genética , Fímbrias Bacterianas/metabolismo , Sistemas do Segundo Mensageiro , AMP Cíclico/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Fímbrias/genética
10.
J Bacteriol ; 205(4): e0040722, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37022159

RESUMO

Gram-negative bacteria utilize several envelope stress responses (ESRs) to sense and respond to diverse signals within a multilayered cell envelope. The CpxRA ESR responds to multiple stresses that perturb envelope protein homeostasis. Signaling in the Cpx response is regulated by auxiliary factors, such as the outer membrane (OM) lipoprotein NlpE, an activator of the response. NlpE communicates surface adhesion to the Cpx response; however, the mechanism by which NlpE accomplishes this remains unknown. In this study, we report a novel interaction between NlpE and the major OM protein OmpA. Both NlpE and OmpA are required to activate the Cpx response in surface-adhered cells. Furthermore, NlpE senses OmpA overexpression and the NlpE C-terminal domain transduces this signal to the Cpx response, revealing a novel signaling function for this domain. Mutation of OmpA peptidoglycan-binding residues abrogates signaling during OmpA overexpression, suggesting that NlpE signaling from the OM through the cell wall is coordinated via OmpA. Overall, these findings reveal NlpE to be a versatile envelope sensor that takes advantage of its structure, localization, and cooperation with other envelope proteins to initiate adaptation to diverse signals. IMPORTANCE The envelope is not only a barrier that protects bacteria from the environment but also a crucial site for the transduction of signals critical for colonization and pathogenesis. The discovery of novel complexes between NlpE and OmpA contributes to an emerging understanding of the key contribution of OM ß-barrel protein and lipoprotein complexes to envelope stress signaling. Overall, our findings provide mechanistic insight into how the Cpx response senses signals relevant to surface adhesion and biofilm growth to facilitate bacterial adaptation.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(17): 9519-9528, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32277032

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that colonizes the gastrointestinal tract and has evolved intricate mechanisms to sense and respond to the host environment. Upon the sensation of chemical and physical cues specific to the host's intestinal environment, locus of enterocyte effacement (LEE)-encoded virulence genes are activated and promote intestinal colonization. The LEE transcriptional activator GrlA mediates EHEC's response to mechanical cues characteristic of the intestinal niche, including adhesive force that results from bacterial adherence to epithelial cells and fluid shear that results from intestinal motility and transit. GrlA expression and release from its inhibitor GrlR was not sufficient to induce virulence gene transcription; mechanical stimuli were required for GrlA activation. The exact mechanism of GrlA activation, however, remained unknown. We isolated GrlA mutants that activate LEE transcription, independent of applied mechanical stimuli. In nonstimulated EHEC, wild-type GrlA associates with cardiolipin membrane domains via a patch of basic C-terminal residues, and this membrane sequestration is disrupted in EHEC that expresses constitutively active GrlA mutants. GrlA transitions from an inactive, membrane-associated state and relocalizes to the cytoplasm in response to mechanical stimuli, allowing GrlA to bind and activate the LEE1 promoter. GrlA expression and its relocalization in response to mechanical stimuli are required for optimal virulence regulation and colonization of the host intestinal tract during infection. These data suggest a posttranslational regulatory mechanism of the mechanosensor GrlA, whereby virulence gene expression can be rapidly fine-tuned in response to the highly dynamic spatiotemporal mechanical profile of the gastrointestinal tract.


Assuntos
Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Transativadores/metabolismo , Animais , Proteínas de Escherichia coli/genética , Larva/microbiologia , Mecanotransdução Celular , Mutação Puntual , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transativadores/genética , Transcrição Gênica , Virulência , Peixe-Zebra
12.
Proc Natl Acad Sci U S A ; 117(30): 17984-17991, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661164

RESUMO

Cellular differentiation is a fundamental strategy used by cells to generate specialized functions at specific stages of development. The bacterium Caulobacter crescentus employs a specialized dimorphic life cycle consisting of two differentiated cell types. How environmental cues, including mechanical inputs such as contact with a surface, regulate this cell cycle remain unclear. Here, we find that surface sensing by the physical perturbation of retracting extracellular pilus filaments accelerates cell-cycle progression and cellular differentiation. We show that physical obstruction of dynamic pilus activity by chemical perturbation or by a mutation in the outer-membrane pilus secretin CpaC stimulates early initiation of chromosome replication. In addition, we find that surface contact stimulates cell-cycle progression by demonstrating that surface-stimulated cells initiate early chromosome replication to the same extent as planktonic cells with obstructed pilus activity. Finally, we show that obstruction of pilus retraction stimulates the synthesis of the cell-cycle regulator cyclic diguanylate monophosphate (c-di-GMP) through changes in the activity and localization of two key regulatory histidine kinases that control cell fate and differentiation. Together, these results demonstrate that surface contact and sensing by alterations in pilus activity stimulate C. crescentus to bypass its developmentally programmed temporal delay in cell differentiation to more quickly adapt to a surface-associated lifestyle.


Assuntos
Fenômenos Fisiológicos Bacterianos , Caulobacter crescentus/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Ciclo Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Replicação do DNA , Fímbrias Bacterianas/fisiologia , Modelos Biológicos , Mutação
13.
J Bacteriol ; 204(6): e0008422, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35612303

RESUMO

Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins' relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.


Assuntos
Pseudomonas aeruginosa , Tato , Fenômenos Fisiológicos Bacterianos , Biofilmes , Fímbrias Bacterianas/metabolismo , Humanos , Pseudomonas aeruginosa/metabolismo
14.
J Bacteriol ; 204(10): e0018622, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36073942

RESUMO

Pseudomonas aeruginosa type IV pili (TFP) are important for twitching motility and biofilm formation. TFP have been implicated in surface sensing, a process whereby surface-engaged cells upregulate the synthesis of the second messenger cAMP to propagate a signaling cascade leading to biofilm initiation and repression of motility. Here, we showed that mutations in PilA impairing proteolytic processing of the prepilin into mature pilin as well as the disruption of essential TFP components, including the PilC platform protein and PilB assembly motor protein, fail to induce surface-dependent cAMP signaling. We showed that TFP retraction by surface-engaged cells was required to induce signaling and that the retractile motor PilT was both necessary and sufficient to power surface-specific induction of cAMP. Furthermore, full TFP function required to support twitching motility is not required for robust cAMP signalling. The PilU retraction motor, in contrast, was unable to support full signaling in the absence of PilT. Finally, while we confirmed that PilA and PilJ interacted by bacterial two-hybrid analysis, our data do not support the current model that PilJ-PilA interaction drives cAMP signaling. IMPORTANCE Surface sensing by P. aeruginosa requires TFP. TFP plays a critical role in the induction of the second messenger cAMP upon surface contact; this second messenger is part of a larger cascade involved in the transition from a planktonic to a biofilm lifestyle. Here, we showed that TFP must be deployed and actively retracted by the PilT motor for the full induction of cAMP signaling. Furthermore, the mechanism whereby TFP retraction triggers cAMP induction is not well understood, and our data argue against one of the current models in the field proposed to address this knowledge gap.


Assuntos
Proteínas de Fímbrias , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Biofilmes , Sistemas do Segundo Mensageiro , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
15.
Appl Environ Microbiol ; 88(3): e0185321, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878816

RESUMO

The survival and successful spread of many bacterial species hinges on their mode of motility. One of the most distinct of these is swarming, a collective form of motility where a dense consortium of bacteria employ flagella to propel themselves across a solid surface. Surface environments pose unique challenges, derived from higher surface friction/tension and insufficient hydration. Bacteria have adapted by deploying an array of mechanisms to overcome these challenges. Beyond allowing bacteria to colonize new terrain in the absence of bulk liquid, swarming also bestows faster speeds and enhanced antibiotic resistance to the collective. These crucial attributes contribute to the dissemination, and in some cases pathogenicity, of an array of bacteria. This minireview highlights (i) aspects of swarming motility that differentiate it from other methods of bacterial locomotion, (ii) facilitatory mechanisms deployed by diverse bacteria to overcome different surface challenges, (iii) the (often difficult) approaches required to cultivate genuine swarmers, (iv) the methods available to observe and assess the various facets of this collective motion, and (v) the features exhibited by the population as a whole.


Assuntos
Bactérias , Flagelos , Proteínas de Bactérias , Movimento , Virulência
16.
Proc Natl Acad Sci U S A ; 115(17): 4471-4476, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29559526

RESUMO

Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Fímbrias Bacterianas/fisiologia , Pseudomonas aeruginosa/fisiologia , Sistemas do Segundo Mensageiro/fisiologia
17.
Adv Exp Med Biol ; 1267: 81-100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894478

RESUMO

Many bacteria are able to actively propel themselves through their complex environment, in search of resources and suitable niches. The source of this propulsion is the Bacterial Flagellar Motor (BFM), a molecular complex embedded in the bacterial membrane which rotates a flagellum. In this chapter we review the known physical mechanisms at work in the motor. The BFM shows a highly dynamic behavior in its power output, its structure, and in the stoichiometry of its components. Changes in speed, rotation direction, constituent protein conformations, and the number of constituent subunits are dynamically controlled in accordance to external chemical and mechanical cues. The mechano-sensitivity of the motor is likely related to the surface-sensing ability of bacteria, relevant in the initial stage of biofilm formation.


Assuntos
Bactérias/metabolismo , Flagelos/metabolismo , Biofilmes , Conformação Proteica , Rotação
18.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858303

RESUMO

Swarming on rigid surfaces requires movement of cells as individuals and as a group of cells. For the bacterium Proteus mirabilis, an individual cell can respond to a rigid surface by elongating and migrating over micrometer-scale distances. Cells can form groups of transiently aligned cells, and the collective population is capable of migrating over centimeter-scale distances. To address how P. mirabilis populations swarm on rigid surfaces, we asked whether cell elongation and single-cell motility are coupled to population migration. We first measured the relationship between agar concentration (a proxy for surface rigidity), single-cell phenotypes, and swarm colony phenotypes. We find that cell elongation and single-cell motility are coupled with population migration on low-percentage hard agar (1% to 2.5%) and become decoupled on high-percentage hard agar (>2.5%). Next, we evaluate how disruptions in lipopolysaccharide (LPS), specifically the O-antigen components, affect responses to hard agar. We find that LPS is not essential for elongation and motility of individual cells, as predicted, and instead functions to broaden the range of agar concentrations on which cell elongation and motility are coupled with population migration. These findings demonstrate that cell elongation and motility are coupled with population migration under a permissive range of surface conditions; increasing agar concentration is sufficient to decouple these behaviors. Since swarm colonies cover greater distances when these steps are coupled than when they are not, these findings suggest that collective interactions among P. mirabilis cells might be emerging as a colony expands outwards on rigid surfaces.IMPORTANCE How surfaces influence cell size, cell-cell interactions, and population migration for robust swarmers like P. mirabilis is not fully understood. Here, we have elucidated how cells change length along a spectrum of sizes that positively correlates with increases in agar concentration, regardless of population migration. Single-cell phenotypes can be decoupled from collective population migration simply by increasing agar concentration. A cell's lipopolysaccharides function to broaden the range of agar conditions under which cell elongation and single-cell motility remain coupled with population migration. In eukaryotes, the physical environment, such as a surface matrix, can impact cell development, shape, and migration. These findings support the idea that rigid surfaces similarly act on swarming bacteria to impact cell shape, single-cell motility, and collective population migration.


Assuntos
Ágar/farmacologia , Lipopolissacarídeos/química , Proteus mirabilis/efeitos dos fármacos , Ágar/química , Fenômenos Biomecânicos , Movimento/efeitos dos fármacos , Movimento/fisiologia , Fenótipo , Proteus mirabilis/química , Proteus mirabilis/fisiologia , Proteus mirabilis/ultraestrutura , Análise de Célula Única , Propriedades de Superfície
19.
Proc Natl Acad Sci U S A ; 113(7): 1790-5, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26839412

RESUMO

Over 30 years ago, GGDEF domain-containing enzymes were shown to be diguanylate cyclases that produce cyclic di-GMP (cdiG), a second messenger that modulates the key bacterial lifestyle transition from a motile to sessile biofilm-forming state. Since then, the ubiquity of genes encoding GGDEF proteins in bacterial genomes has established the dominance of cdiG signaling in bacteria. However, the observation that proteobacteria encode a large number of GGDEF proteins, nearing 1% of coding sequences in some cases, raises the question of why bacteria need so many GGDEF enzymes. In this study, we reveal that a subfamily of GGDEF enzymes synthesizes the asymmetric signaling molecule cyclic AMP-GMP (cAG or 3', 3'-cGAMP). This discovery is unexpected because GGDEF enzymes function as symmetric homodimers, with each monomer binding to one substrate NTP. Detailed analysis of the enzyme from Geobacter sulfurreducens showed it is a dinucleotide cyclase capable of switching the major cyclic dinucleotide (CDN) produced based on ATP-to-GTP ratios. We then establish through bioinformatics and activity assays that hybrid CDN-producing and promiscuous substrate-binding (Hypr) GGDEF enzymes are found in other deltaproteobacteria. Finally, we validated the predictive power of our analysis by showing that cAG is present in surface-grown Myxococcus xanthus. This study reveals that GGDEF enzymes make alternative cyclic dinucleotides to cdiG and expands the role of this widely distributed enzyme family to include regulation of cAG signaling.


Assuntos
Proteínas de Escherichia coli/metabolismo , Nucleotídeos Cíclicos/biossíntese , Fósforo-Oxigênio Liases/metabolismo , Deltaproteobacteria/enzimologia , Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 112(24): 7563-8, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26041805

RESUMO

Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity.


Assuntos
Fímbrias Bacterianas/fisiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/fisiologia , Aderência Bacteriana/fisiologia , Fenômenos Biofísicos , AMP Cíclico/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/fisiologia , Fímbrias Bacterianas/classificação , Genes Bacterianos , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/fisiologia , Mutação , Óperon , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA