Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
J Endocrinol Invest ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698299

RESUMO

AIMS AND BACKGROUND: The alternative manner of iodide and glucose uptake found in different types of thyroid cancer, referred to flip-flop. ATC cells indicate low iodide uptake and high glucose uptake, which lack the morphology and genetic characteristics of well-differentiated tumors and become increasingly invasive. Importance placed on the discovery of innovative multi-targeted medicines to suppress the dysregulated signaling in cancer. In this research, we aimed to clarify molecular mechanism of Rutin as a phytomedicine on anaplastic thyroid cancer cell line based on iodide and glucose uptake. MATERIAL METHODS: The MTT test was employed to test cell viability. Iodide uptake assay was performed using a spectrophotometric assay to determine iodide uptake in SW1736 cells based on Sandell-Kolthoff reaction. For glucose uptake detection, ''GOD-PAP'' enzymatic colorimetric assay was applied to measure the direct glucose levels inside of the cells. Determination of NIS, GLUT1 and 3 mRNA expression in SW1736 cells was performed by qRT-PCR. Determination of NIS, GLUT1 and 3 protein levels in SW1736 cells was performed by western blotting. RESULTS: According to our results, Rutin inhibited the viability of SW1736 cells in a time- and dose-dependent manner. Quantitative Real-time RT-PCR analysis exposed that NIS mRNA levels were increased in Rutin treated group compared to the control group. Accordingly, western blot showed high expression of NIS protein and low expression of GLUT 1 and 3 in Rutin treated SW1736 cell line. Rutin increased iodide uptake and decreased glucose uptake in thyroid cancer cell line SW1736 compared to control group. CONCLUSION: Multiple mechanisms point to Rutin's role as a major stimulator of iodide uptake and inhibitor of glucose uptake, including effects at the mRNA and protein levels for both NIS and GLUTs, respectively. Here in, we described the flip-flop phenomenon as a possible therapeutic target for ATC. Moreover, Rutin is first documented here as a NIS expression inducer capable of restoring cell differentiation in SW1736 cell line. It also be concluded that GLUTs as metabolic targets can be blocked specifically by Rutin for thyroid cancer prevention and treatment.

2.
Vet Pathol ; 61(4): 524-533, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38098215

RESUMO

Research on modulation of iodine uptake by thyroid cells could help improve radioiodine treatment of dogs with thyroid tumors. The aim of this study was to characterize the immunohistochemical expression of thyroid transcription factor-1 (TTF-1), thyroglobulin, thyrotropin receptor (TSHR), sodium iodide symporter (NIS), pendrin, thyroid peroxidase (TPO), vimentin, and Ki-67 in follicular cell thyroid carcinomas (FTCs) and medullary thyroid carcinomas (MTCs), and to compare protein expression between FTC causing hyperthyroidism and FTC of euthyroid dogs. Immunohistochemistry was performed in 25 FTCs (9 follicular, 8 follicular-compact, and 8 compact) and 8 MTCs. FTCs and MTCs were positive for TTF-1, and expression was higher in FTCs of euthyroid dogs compared with FTCs of hyperthyroid dogs (P= .041). Immunolabeling for thyroglobulin was higher in follicular and follicular-compact FTCs compared with compact FTCs (P = .001), while vimentin expression was higher in follicular-compact FTCs compared with follicular FTCs (P = .011). The expression of TSHR, NIS, pendrin, and TPO was not significantly different among the different subtypes of FTCs or between FTCs causing hyperthyroidism and FTCs in euthyroid dogs. TSHR, NIS, pendrin, and TPO were also expressed in MTCs. Ki-67 labeling index was comparable between FTCs and MTCs, and between FTCs causing hyperthyroidism and FTCs in euthyroid dogs. Proteins of iodine transport were also expressed in canine MTCs, which could have implications for diagnosis and treatment. The different expression of thyroglobulin and vimentin between FTC histological subtypes could reflect variations in tumor differentiation.


Assuntos
Adenocarcinoma Folicular , Carcinoma Neuroendócrino , Doenças do Cão , Imuno-Histoquímica , Neoplasias da Glândula Tireoide , Cães , Animais , Neoplasias da Glândula Tireoide/veterinária , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Imuno-Histoquímica/veterinária , Carcinoma Neuroendócrino/veterinária , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Adenocarcinoma Folicular/veterinária , Adenocarcinoma Folicular/patologia , Adenocarcinoma Folicular/metabolismo , Tireoglobulina/metabolismo , Masculino , Simportadores/metabolismo , Feminino , Receptores da Tireotropina/metabolismo , Iodeto Peroxidase/metabolismo , Vimentina/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Hipertireoidismo/veterinária , Hipertireoidismo/metabolismo , Hipertireoidismo/patologia , Antígeno Ki-67/metabolismo
3.
Drug Resist Updat ; 68: 100939, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806005

RESUMO

Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Radioisótopos do Iodo/uso terapêutico , Biomarcadores , Transdução de Sinais , Microambiente Tumoral/genética
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443220

RESUMO

Sugar transport across tonoplasts is essential for maintaining cellular sugar homeostasis and metabolic balance in plant cells. It remains unclear, however, how this process is regulated among different classes of sugar transporters. Here, we identified a tonoplast H+/glucose symporter, MdERDL6-1, from apples, which was highly expressed in fruits and exhibited expression patterns similar to those of the tonoplast H+/sugar antiporters MdTST1 and MdTST2. Overexpression of MdERDL6-1 unexpectedly increased not only glucose (Glc) concentration but also that of fructose (Fru) and sucrose (Suc) in transgenic apple and tomato leaves and fruits. RNA sequencing (RNA-seq) and expression analyses showed an up-regulation of TST1 and TST2 in the transgenic apple and tomato lines overexpressing MdERDL6-1 Further studies established that the increased sugar concentration in the transgenic lines correlated with up-regulation of TST1 and TST2 expression. Suppression or knockout of SlTST1 and SlTST2 in the MdERDL6-1-overexpressed tomato background reduced or abolished the positive effect of MdERDL6-1 on sugar accumulation, respectively. The findings demonstrate a regulation of TST1 and TST2 by MdERDL6-1, in which Glc exported by MdERDL6-1 from vacuole up-regulates TST1 and TST2 to import sugars from cytosol to vacuole for accumulation to high concentrations. The results provide insight into the regulatory mechanism of sugar accumulation in vacuoles mediated by the coordinated action of two classes of tonoplast sugar transporters.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Malus/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Vacúolos/metabolismo , Citosol/metabolismo , Frutose/metabolismo , Frutas/metabolismo , Técnicas de Inativação de Genes , Inativação Gênica , Glucose/metabolismo , Solanum lycopersicum/genética , Malus/genética , Proteínas de Transporte de Monossacarídeos/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA-Seq , Sacarose/metabolismo , Regulação para Cima
5.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542444

RESUMO

The degradation of cellulose generates cellooligomers, which function as damage-associated molecular patterns and activate immune and cell wall repair responses via the CELLOOLIGOMER RECEPTOR KINASE1 (CORK1). The most active cellooligomer for the induction of downstream responses is cellotriose, while cellobiose is around 100 times less effective. These short-chain cellooligomers are also metabolized after uptake into the cells. In this study, we demonstrate that CORK1 is mainly expressed in the vascular tissue of the upper, fully developed part of the roots. Cellooligomer/CORK1-induced responses interfere with chitin-triggered immune responses and are influenced by BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE1 and the receptor kinase FERONIA. The pathway also controls sugar transporter and metabolism genes and the phosphorylation state of these proteins. Furthermore, cellotriose-induced ROS production and WRKY30/40 expression are controlled by the sugar transporters SUCROSE-PROTON SYMPORTER1, SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER11 (SWEET11), and SWEET12. Our data demonstrate that cellooligomer/CORK1 signaling is integrated into the pattern recognition receptor network and coupled to the primary sugar metabolism in Arabidopsis roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Açúcares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
6.
Mol Med ; 29(1): 121, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684566

RESUMO

BACKGROUND: As the tissue with the highest selenium content in the body, the occurrence and development of thyroid cancer are closely related to selenium and selenoproteins. Selenium-binding protein 1 (SBP1) has been repeatedly implicated in several cancers, but its role and molecular mechanisms in thyroid cancer remains largely undefined. METHODS: The expression of SBP1, sodium/iodide symporter (NIS) and thioredoxin (TXN) were analyzed in clinical samples and cell lines. Cell counting kit-8 (CCK-8) and tube formation assays were used to analyze the cell viability and tube formation of cells. Immunofluorescence was used to determine the expression of the NIS. Co-immunoprecipitation (Co-IP) assay was carried out to verify the interaction of SBP1 with TXN. The mouse xenograft experiment was performed to investigate the growth of thyroid cancer cells with SBP1 knockdown in vivo. RESULTS: SBP1 was significantly increased in human thyroid cancer tissues and cells, especially in anaplastic thyroid cancer. Overexpression of SBP1 promoted FTC-133 cell proliferation, and the culture supernatant of SBP1-overexpression FTC-133 cells promoted tube formation of human retinal microvascular endothelial cells. Knockdown of SBP1, however, inhibited cell proliferation and tube formation. Furthermore, overexpression of SBP1 inhibited cellular differentiation of differentiated thyroid cancer cell line FTC-133, as indicated by decreased expression of thyroid stimulating hormone receptors, thyroglobulin and NIS. Knockdown of SBP1, however, promoted differentiation of BHT101 cells, an anaplastic thyroid cancer cell line. Notably, TXN, a negative regulator of NIS, was found to be significantly upregulated in human thyroid cancer tissues, and it was positively regulated by SBP1. Co-IP assay implied a direct interaction of SBP1 with TXN. Additionally, TXN overexpression reversed the effect of SBP1 knockdown on BHT101 cell viability, tube formation and cell differentiation. An in vivo study found that knockdown of SBP1 promoted the expression of thyroid stimulating hormone receptors, thyroglobulin and NIS, as well as inhibited the growth and progression of thyroid cancer tumors. CONCLUSION: SBP1 promoted tumorigenesis and dedifferentiation of thyroid cancer through positively regulating TXN.


Assuntos
Selênio , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Humanos , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica , Células Endoteliais , Receptores da Tireotropina , Tiorredoxinas , Tireoglobulina , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Proteínas de Ligação a Selênio/metabolismo
7.
Chemistry ; 29(44): e202301020, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37218621

RESUMO

Single molecules that co-transport cations as well as anions across lipid membranes are few despite their high biological utility. The elegant yet simple lipidomimmetic peptide design herein enables efficient HCl transport without the use of any external additives for proton transport. The carboxylic acids in the dipeptide scaffold provide a handle to append two long hydrophobic tails and also provide a polar hydrophilic carboxylate group. The peptide central unit also provides NH sites for anion binding. Protonation of the carboxylate group coupled with the weak halide binding of the terminal NH group results in HCl transport with transport rates of H+ >Cl- . The lipid-like structure also facilitates seamless membrane integration and flipping of the molecule. The biocompatibility, design simplicity, and potential pH regulation of these molecules open up several avenues for their therapeutic use.


Assuntos
Lipídeos , Peptídeos , Transporte de Íons , Ânions , Transporte Biológico
8.
Crit Rev Toxicol ; 53(6): 339-371, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37554099

RESUMO

Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.


Assuntos
Disruptores Endócrinos , Glândula Tireoide , Animais , Humanos , Disruptores Endócrinos/toxicidade , Testes de Toxicidade , Ecotoxicologia , Hormônios Tireóideos , Medição de Risco
9.
J Exp Biol ; 226(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789831

RESUMO

Osmoregulatory findings on crabs from high Neotropical latitudes are entirely lacking. Seeking to identify the consequences of evolution at low temperature, we examined hyperosmotic/hypo-osmotic and ionic regulation and gill ion transporter gene expression in two sub-Antarctic Eubrachyura from the Beagle Channel, Tierra del Fuego. Despite sharing the same osmotic niche, Acanthocyclus albatrossis tolerates a wider salinity range (2-65‰ S) than Halicarcinus planatus (5-60‰ S); their respective lower and upper critical salinities are 4‰ and 12‰ S, and 63‰ and 50‰ S. Acanthocyclus albatrossis is a weak hyperosmotic regulator, while H. planatus hyperosmoconforms; isosmotic points are 1380 and ∼1340 mOsm kg-1 H2O, respectively. Both crabs hyper/hypo-regulate [Cl-] well with iso-chloride points at 452 and 316 mmol l-1 Cl-, respectively. [Na+] is hyper-regulated at all salinities. mRNA expression of gill Na+/K+-ATPase is salinity sensitive in A. albatrossis, increasing ∼1.9-fold at 5‰ compared with 30‰ S, decreasing at 40-60‰ S. Expression in H. planatus is very low salinity sensitive, increasing ∼4.7-fold over 30‰ S, but decreasing at 50‰ S. V-ATPase expression decreases in A. albatrossis at low and high salinities as in H. planatus. Na+/K+/2Cl- symporter expression in A. albatrossis increases 2.6-fold at 5‰ S, but decreases at 60‰ S versus 30‰ S. Chloride uptake may be mediated by increased Na+/K+/2Cl- expression but Cl- secretion is independent of symporter expression. These unrelated eubrachyurans exhibit similar systemic osmoregulatory characteristics and are better adapted to dilute media; however, the expression of genes underlying ion uptake and secretion shows marked interspecific divergence. Cold clime crabs may limit osmoregulatory energy expenditure by hyper/hypo-regulating hemolymph [Cl-] alone, apportioning resources for other energy-demanding processes.


Assuntos
Braquiúros , Simportadores , Cães , Animais , Braquiúros/metabolismo , Cloretos/metabolismo , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Salinidade , Sódio/metabolismo , Simportadores/metabolismo
10.
J Endocrinol Invest ; 46(10): 2079-2093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36933170

RESUMO

PURPOSE: Radioiodine I-131 (RAI) is the therapy of choice for differentiated thyroid cancer (DTC). Between 5% and 15% of DTC patients become RAI refractory, due to the loss of expression/function of iodide metabolism components, especially the Na/I symporter (NIS). We searched for a miRNA profile associated with RAI-refractory DTC to identify novel biomarkers that could be potential targets for redifferentiation therapy. METHODS: We analyzed the expression of 754 miRNAs in 26 DTC tissues: 12 responsive (R) and 14 non-responsive (NR) to RAI therapy. We identified 15 dysregulated miRNAs: 14 were upregulated, while only one (miR-139-5p) was downregulated in NR vs. R tumors. We investigated the role of miR-139-5p in iodine uptake metabolism. We overexpressed miR-139-5p in two primary and five immortalized thyroid cancer cell lines, and we analyzed the transcript and protein levels of NIS and its activation through iodine uptake assay and subcellular protein localization. RESULTS: The finding of higher intracellular iodine levels and increased cell membrane protein localization in miR-139-5p overexpressing cells supports the role of this miRNA in the regulation of NIS function. CONCLUSIONS: Our study provides evidence of miR-139-5p involvement in iodine uptake metabolism and suggests its possible role as a therapeutic target in restoring iodine uptake in RAI-refractory DTC.


Assuntos
Iodo , MicroRNAs , Simportadores , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Simportadores/genética
11.
Proc Natl Acad Sci U S A ; 117(36): 22544-22551, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32826330

RESUMO

Obesity is a major health problem worldwide, given its growing incidence and its association with a variety of comorbidities. Weight gain results from an increase in energy intake without a concomitant increase in energy expenditure. To combat the obesity epidemic, many studies have focused on the pathways underlying satiety and hunger signaling, while other studies have concentrated on the mechanisms involved in energy expenditure, most notably adaptive thermogenesis. Hypothyroidism in humans is typically associated with a decreased basal metabolic rate, lower energy expenditure, and weight gain. However, hypothyroid mouse models have been reported to have a leaner phenotype than euthyroid controls. To elucidate the mechanism underlying this phenomenon, we used a drug-free mouse model of hypothyroidism: mice lacking the sodium/iodide symporter (NIS), the plasma membrane protein that mediates active iodide uptake in the thyroid. In addition to being leaner than euthyroid mice, owing in part to reduced food intake, these hypothyroid mice show signs of compensatory up-regulation of the skeletal-muscle adaptive thermogenic marker sarcolipin, with an associated increase in fatty acid oxidation (FAO). Neither catecholamines nor thyroid-stimulating hormone (TSH) are responsible for sarcolipin expression or FAO stimulation; rather, thyroid hormones are likely to negatively regulate both processes in skeletal muscle. Our findings indicate that hypothyroidism in mice results in a variety of metabolic changes, which collectively lead to a leaner phenotype. A deeper understanding of these changes may make it possible to develop new strategies against obesity.


Assuntos
Hipotireoidismo/metabolismo , Músculo Esquelético/metabolismo , Termogênese/fisiologia , Animais , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Fenótipo , Proteolipídeos/metabolismo , Simportadores/genética , Simportadores/metabolismo
12.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769088

RESUMO

Improved therapeutic strategies are required to minimize side effects associated with radioiodine gene therapy to avoid unnecessary damage to normal cells and radiation-induced secondary malignancies. We previously reported that codon-optimized sodium iodide symporter (oNIS) enhances absorption of I-131 and that the brahma-associated gene 1 bromodomain (BRG1-BRD) causes inefficient DNA damage repair after high-energy X-ray therapy. To increase the therapeutic effect without applying excessive radiation, we considered the combination of oNIS and BRG1-BRD as gene therapy for the most effective radioiodine treatment. The antitumor effect of I-131 with oNIS or oNIS+BRD expression was examined by tumor xenograft models along with functional assays at the cellular level. The synergistic effect of both BRG1-BRD and oNIS gene overexpression resulted in more DNA double-strand breaks and led to reduced cell proliferation/survival rates after I-131 treatment, which was mediated by the p53/p21 pathway. We found increased p53, p21, and nucleophosmin 1 (NPM1) in oNIS- and BRD-expressing cells following I-131 treatment, even though the remaining levels of citrulline and protein arginine deiminase 4 (PAD4) were unchanged at the protein level.


Assuntos
Radioisótopos do Iodo , Simportadores , Humanos , Linhagem Celular Tumoral , Radioisótopos do Iodo/uso terapêutico , Radioisótopos do Iodo/metabolismo , Simportadores/genética , Simportadores/metabolismo , Proteína Supressora de Tumor p53/genética
13.
Pol Merkur Lekarski ; 51(4): 430-432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37756465

RESUMO

Modern treatment of glioblastoma multiforme (GBM) is based on neurosurgical methods combined with radiotherapy and chemotherapy. The prognosis for patients with GBM is extremely poor. Often, complete removal of the tumor is impossible and it often recurs. Therefore, in addition to standard regimens, modern methods such as modulated electrohyperthermia, monoclonal antibodies and individualised multimodal immunotherapy (IMI) based on vaccines and oncolytic viruses are also used in the treatment of GBM. Radioiodine therapy (RIT) also holds out hope for an effective treatment of this extremely aggressive brain tumor. The expression of the sodium iodide symporter (NIS) gene has been proven to have a positive effect on the treatment of selected cancers. Research confirm the presence of expression of this gene in GBM cells, although only in animal studies. Is it possible and therapeutically effective to treat GBM with RIT without the use of an exogenous NIS gene? The safety of therapy is relevant, as the only more serious adverse effect may be hypothyroidism. The use of RIT requires further clinical studies in patients. Perhaps it is worth revolutionizing GBM therapy to give sufferers a "new life".


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glioblastoma , Hipotireoidismo , Animais , Humanos , Glioblastoma/terapia , Radioisótopos do Iodo , Recidiva Local de Neoplasia
14.
Pol Merkur Lekarski ; 51(4): 433-435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37756466

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and malignant brain tumor. The average survival time for a patient diagnosed with GBM, using standard treatment methods, is several months. Besides the routinely applied treatments such as neurosurgery, radiotherapy, and chemotherapy, progress is being made in the field of oncology, offering hope for improved treatment outcomes. New treatment methods include individualized multimodal immunotherapy (IMI) and modulated electro-hyperthermia. The coauthor of the above series of articles (parts 1 and 2) - A.Cz. presents the concept of a new, potentially breakthrough treatment option for recurrent GBM. A.Cz. was diagnosed with GBM in August 2021. Exhaustion of standard treatment methods, as well as immunotherapy and virotherapy, only provided temporary relief. Unfortunately, after a few months, the disease recurred. Having little to lose, A.Cz. accepted an ablative dose of 2960 MBq (80 mCi) of I131, based on available literature data. Three days before the administration of radioiodine therapy (RIT), A.Cz. prophylactically blocked the thyroid's ability to absorb the radioisotope. In June 2023, approximately 7 weeks after receiving single I131 dose, the MRI examination confirmed a 30% reduction in the tumor's size. Based on this, one can speculate that Iodine-131 therapy may be an alternative treatment option for GBM patients in the future. However, this hypothesis requires confirmation in further clinical studies.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Radioisótopos do Iodo , Recidiva Local de Neoplasia/terapia , Febre
15.
J Biol Chem ; 297(3): 101090, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34416232

RESUMO

The melibiose permease of Salmonella typhimurium (MelBSt) catalyzes the stoichiometric symport of galactopyranoside with a cation (H+, Li+, or Na+) and is a prototype for Na+-coupled major facilitator superfamily (MFS) transporters presenting from bacteria to mammals. X-ray crystal structures of MelBSt have revealed the molecular recognition mechanism for sugar binding; however, understanding of the cation site and symport mechanism is still vague. To further investigate the transport mechanism and conformational dynamics of MelBSt, we generated a complete single-Cys library containing 476 unique mutants by placing a Cys at each position on a functional Cys-less background. Surprisingly, 105 mutants (22%) exhibit poor transport activities (<15% of Cys-less transport), although the expression levels of most mutants were comparable to that of the control. The affected positions are distributed throughout the protein. Helices I and X and transmembrane residues Asp and Tyr are most affected by cysteine replacement, while helix IX, the cytoplasmic middle-loop, and C-terminal tail are least affected. Single-Cys replacements at the major sugar-binding positions (K18, D19, D124, W128, R149, and W342) or at positions important for cation binding (D55, N58, D59, and T121) abolished the Na+-coupled active transport, as expected. We mapped 50 loss-of-function mutants outside of these substrate-binding sites that suffered from defects in protein expression/stability or conformational dynamics. This complete Cys-scanning mutagenesis study indicates that MelBSt is highly susceptible to single-Cys mutations, and this library will be a useful tool for further structural and functional studies to gain insights into the cation-coupled symport mechanism for Na+-coupled MFS transporters.


Assuntos
Cisteína/metabolismo , Simportadores/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico Ativo , Transporte de Íons , Modelos Moleculares , Mutagênese/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sódio/metabolismo , Simportadores/metabolismo
16.
Curr Issues Mol Biol ; 44(4): 1488-1496, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35723359

RESUMO

Sodium iodide symporter (NIS) expression in thyroid follicular cells plays an important role in normal physiology and radioactive iodine therapy for thyroid cancer. Loss of NIS expression is often seen in thyroid cancers and may lead to radioiodine refractoriness. To explore novel mechanisms of NIS repression beyond oncogenic drivers, clinical and RNA-seq data from the thyroid cancer dataset of The Cancer Genome Atlas were analyzed. Propensity score matching was used to control for various genetic background factors. We found that tumoral NIS expression was negatively correlated with tumor size. Additionally, low NIS expression was the only factor associated with recurrence-free survival in a Cox multivariate regression analysis. After matching for clinicopathologic profiles and driver mutations, the principal component analysis revealed distinct gene expressions between the high and low NIS groups. Gene set enrichment analysis suggested the downregulation of hedgehog signaling, immune networks, and cell adhesions. Positively enriched pathways included DNA replication, nucleotide excision repair, MYC, and Wnt/ß-catenin pathways. In summary, we identified several potential targets which could be exploited to rescue the loss of NIS expression and develop redifferentiation strategies to facilitate radioactive iodine therapy for thyroid cancer.

17.
Cancer Cell Int ; 22(1): 61, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114985

RESUMO

Radioiodine (RAI) is the mainstay of treatment for differentiated thyroid carcinoma (DTC) following total thyroidectomy. Nevertheless, about 5% of patients with DTC are RAI-refractory (RAI-R). Understanding the molecular mechanisms associated with DTC during progression towards RAI-R DTC, including thyroid-stimulating hormone levels, may help to explain the pathophysiology of challenging RAI-R DTC clinical cases.

18.
Cancer Cell Int ; 22(1): 310, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221112

RESUMO

BACKGROUND: Gene silence via methylation of the CpG islands is cancer's most common epigenetic modification. Given the highly significant role of NIS in thyroid cancer (TC) differentiation, this cross-sectional study aimed to investigate the DNA methylation pattern in seven CpG islands (CpG1-7 including +846, +918, +929, +947, +953, +955, and +963, respectively) of the NIS promoter in patients diagnosed with papillary (PTC), follicular (FTC), and multinodular goiter (MNG). Additionally, a systematic review of the literature was conducted to compare our results with studies concerning methylation of the NIS gene promoter. METHODS: Thyroid specimens from 64 patients met the eligibility criteria, consisting of 28 PTC, 9 FTC, and 27 benign MNG cases. The mRNA of NIS was tested by qRT-PCR. The bisulfite sequencing PCR (BSP) technique was performed to evaluate the promoter methylation pattern of the NIS gene. Sequencing results were received in chromatograph, FASTA, SEQ, and pdf formats and were analyzed using Chromas. The methylation percentage at each position and for each sample was calculated by mC/(mC+C) formula for all examined CpGs; following that, the methylation percentage was also calculated at each CpG site. Besides, a literature search was conducted without restricting publication dates. Nine studies met the eligibility criteria after removing duplicates, unrelated articles, and reviews. RESULTS: NIS mRNA levels decreased in tumoral tissues of PTC (P = 0.04) and FTC (P = 0.03) patients compared to their matched non-tumoral ones. The methylation of NIS promoter was not common in PTC samples, but it was frequent in FTC (P < 0.05). Significant differences were observed in the methylation levels in the 4th(+ 947), 6th(+ 955), and 7th(+ 963) CpGs sites in the forward strand of NIS promoter between FTC and MNG tissues (76.34 ± 3.12 vs 40.43 ± 8.42, P = 0.004, 69.63 ± 3.03 vs 23.29 ± 6.84, P = 0.001 and 50.33 ± 5.65 vs 24 ± 6.89, P = 0.030, respectively). There was no significant correlation between the expression and methylation status of NIS in PTC and FTC tissues. CONCLUSION: Perturbation in NIS promoter's methylation individually may have a potential utility in differentiating MNG and FTC tissues. The absence of a distinct methylation pattern implies the importance of other epigenetic processes, which may alter the production of NIS mRNA. In addition, according to the reversibility of DNA methylation, it is anticipated that the design of particular targeted demethylation medicines will lead to a novel cancer therapeutic strategy.

19.
FASEB J ; 35(8): e21681, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34196428

RESUMO

The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.


Assuntos
Proteínas de Membrana/metabolismo , Simportadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Códon sem Sentido , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/metabolismo , Sequência Conservada , Cães , Endossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios PDZ/genética , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Simportadores/química , Simportadores/genética , Glândula Tireoide/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
20.
Crit Rev Toxicol ; 52(7): 546-617, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36519295

RESUMO

This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.


Assuntos
Doenças do Sistema Endócrino , Glândula Tireoide , Gravidez , Feminino , Ratos , Animais , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Tiroxina/metabolismo , Tiroxina/farmacologia , Lactação , Reflexo de Sobressalto , Hormônios Tireóideos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA