Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385462

RESUMO

Specific human gut microbes inhabit the outer mucus layer of the gastrointestinal tract. Certain residents of this niche can degrade the large and complex mucin glycoproteins that constitute this layer and utilise the degradation products for their metabolism. In turn, this microbial mucin degradation drives specific microbiological ecological interactions in the human gut mucus layer. However, the exact nature of these interactions remains unknown. In this study, we designed and studied an in vitro mucin-degrading synthetic community that included mucin O-glycan degraders and cross-feeding microorganisms by monitoring community composition and dynamics through a combination of 16S rRNA gene amplicon sequencing and qPCR, mucin glycan degradation with PGC-LC-MS/MS, production of mucin-degrading enzymes and other proteins through metaproteomics, and metabolite production with HPLC. We demonstrated that specialist and generalist mucin O-glycan degraders stably co-exist and found evidence for cross-feeding relationships. Cross-feeding on the products of mucin degradation by other gut microbes resulted in butyrate production, hydrogenotrophic acetogenesis, sulfate reduction and methanogenesis. Metaproteomics analysis revealed that mucin glycan degraders Akkermansia muciniphila, Bacteroides spp. and Ruminococcus torques together contributed 92% of the total mucin O-glycan degrading enzyme pool of this community. Furthermore, comparative proteomics showed that in response to cultivation in a community compared to monoculture, mucin glycan degraders increased carbohydrate-active enzymes whereas we also found indications for niche differentiation. These results confirm the complexity of mucin-driven microbiological ecological interactions and the intricate role of carbohydrate-active enzymes in the human gut mucus layer.

2.
BMC Plant Biol ; 24(1): 546, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872113

RESUMO

BACKGROUND: Apple Replant Disease (ARD) is common in major apple-growing regions worldwide, but the role of rhizosphere microbiota in conferring ARD resistance and promoting plant growth remains unclear. RESULTS: In this study, a synthetic microbial community (SynCom) was developed to enhance apple plant growth and combat apple pathogens. Eight unique bacteria selected via microbial culture were used to construct the antagonistic synthetic community, which was then inoculated into apple seedlings in greenhouse experiments. Changes in the rhizomicroflora and the growth of aboveground plants were monitored. The eight strains, belonging to the genera Bacillus and Streptomyces, have the ability to antagonize pathogens such as Fusarium oxysporum, Rhizoctonia solani, Botryosphaeria ribis, and Physalospora piricola. Additionally, these eight strains can stably colonize in apple rhizosphere and some of them can produce siderophores, ACC deaminase, and IAA. Greenhouse experiments with Malus hupehensis Rehd indicated that SynCom promotes plant growth (5.23%) and increases the nutrient content of the soil, including soil organic matter (9.25%) and available K (1.99%), P (7.89%), and N (0.19%), and increases bacterial richness and the relative abundance of potentially beneficial bacteria. SynCom also increased the stability of the rhizosphere microbial community, the assembly of which was dominated by deterministic processes (|ß NTI| > 2). CONCLUSIONS: Our results provide insights into the contribution of the microbiome to pathogen inhibition and host growth. The formulation and manipulation of similar SynComs may be a beneficial strategy for promoting plant growth and controlling soil-borne disease.


Assuntos
Malus , Doenças das Plantas , Rizosfera , Malus/microbiologia , Malus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Microbiota/fisiologia , Rhizoctonia/fisiologia , Agentes de Controle Biológico , Bacillus/fisiologia , Antibiose
3.
J Virol ; 97(11): e0130023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37888981

RESUMO

IMPORTANCE: We report here efforts to benchmark performance of two widespread approaches for virome analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-stranded RNAs (dsRNAs). This was achieved using synthetic communities of varying complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) comprising isolates from 21 families and 61 genera of plant viruses. The results obtained confirm that the dsRNA-based approach provides a more complete representation of the RNA virome, in particular, for high complexity ones. However, for viromes of low to medium complexity, VANA appears a reasonable alternative and would be the preferred choice if analysis of DNA viruses is of importance. Several parameters impacting performance were identified as well as a direct relationship between the completeness of virome description and sample sequencing depth. The strategy, results, and tools used here should prove useful in a range of virome analysis efforts.


Assuntos
Metagenômica , Biologia Sintética , Viroma , Vírus , Vírus de DNA/classificação , Vírus de DNA/genética , Metagenômica/métodos , Metagenômica/normas , Vírion/genética , Viroma/genética , Biologia Sintética/métodos , RNA de Cadeia Dupla/genética , Vírus/classificação , Vírus/genética , Vírus de Plantas/classificação , Vírus de Plantas/genética
4.
J Exp Bot ; 75(18): 5768-5789, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38809805

RESUMO

Plants can recruit beneficial microbes to enhance their ability to resist disease. It is well established that selenium is beneficial in plant growth, but its role in mediating microbial disease resistance remains poorly understood. Here, we investigated the correlation between selenium, oilseed rape rhizosphere microbes, and Sclerotinia sclerotiorum. Soil application of 0.5 and 1.0 mg kg-1 selenium [selenate Na2SeO4, Se(VI) or selenite Na2SeO3, Se(IV)] significantly increased the resistance of oilseed rape to Sclerotinia sclerotiorum compared with no selenium application, with a disease inhibition rate higher than 20% in Se(VI)0.5, Se(IV)0.5 and Se(IV)1.0 mg kg-1 treatments. The disease resistance of oilseed rape was related to the presence of rhizosphere microorganisms and beneficial bacteria isolated from the rhizosphere inhibited Sclerotinia stem rot. Burkholderia cepacia and the synthetic community consisting of Bacillus altitudinis, Bacillus megaterium, Bacillus cereus, Bacillus subtilis, Bacillus velezensis, Burkholderia cepacia, and Flavobacterium anhui enhanced plant disease resistance through transcriptional regulation and activation of plant-induced systemic resistance. In addition, inoculation of isolated bacteria optimized the bacterial community structure of leaves and enriched beneficial microorganisms such as Bacillus, Pseudomonas, and Sphingomonas. Bacillus isolated from the leaves were sprayed on detached leaves, and it also performed a significant inhibition effect on Sclerotinia sclerotiorum. Overall, our results indicate that selenium improves plant rhizosphere microorganisms and increase resistance to Sclerotinia sclerotiorum in oilseed rape.


Assuntos
Ascomicetos , Brassica napus , Resistência à Doença , Microbiota , Doenças das Plantas , Selênio , Microbiologia do Solo , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Selênio/farmacologia , Selênio/metabolismo , Brassica napus/microbiologia , Brassica napus/crescimento & desenvolvimento , Rizosfera , Solo/química , Bactérias/efeitos dos fármacos
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520150

RESUMO

AIMS: In this study, the control effects of synthetic microbial communities composed of peanut seed bacteria against seed aflatoxin contamination caused by Aspergillus flavus and root rot by Fusarium oxysporum were evaluated. METHODS AND RESULTS: Potentially conserved microbial synthetic communities (C), growth-promoting synthetic communities (S), and combined synthetic communities (CS) of peanut seeds were constructed after 16S rRNA Illumina sequencing, strain isolation, and measurement of plant growth promotion indicators. Three synthetic communities showed resistance to root rot and CS had the best effect after inoculating into peanut seedlings. This was achieved by increased defense enzyme activity and activated salicylic acid (SA)-related, systematically induced resistance in peanuts. In addition, CS also inhibited the reproduction of A. flavus on peanut seeds and the production of aflatoxin. These effects are related to bacterial degradation of toxins and destruction of mycelia. CONCLUSIONS: Inoculation with a synthetic community composed of seed bacteria can help host peanuts resist the invasion of seeds by A. flavus and seedlings by F. oxysporum and promote the growth of peanut seedlings.


Assuntos
Aflatoxinas , Sementes , RNA Ribossômico 16S/genética , Sementes/microbiologia , Fungos/genética , Plântula/microbiologia , Bactérias/genética , Arachis/microbiologia
6.
Environ Res ; 222: 115298, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642122

RESUMO

Plants can recruit soil microorganisms into the rhizosphere when experiencing various environmental stresses, including biotic (e.g., insect pests) and abiotic (e.g., heavy metal pollution, droughts, floods, and salinity) stresses. However, species coexistence in plant resistance has not received sufficient attention. Current research on microbial coexistence is only at the community scale, and there is a limited understanding of the interaction patterns between species, especially microbe‒microbe interactions. The relevant interaction patterns are limited to a few model strains. The coexisting microbial communities form a stable system involving complex nutritional competition, metabolic exchange, and even interdependent interactions. This pattern of coexistence can ultimately enhance plant stress tolerance. Hence, a systematic understanding of the coexistence pattern of rhizosphere microorganisms under stress is essential for the precise development and utilization of synthetic microbial communities and the achievement of efficient ecological control. Here, we integrated current analytical methods and introduced several new experimental methods to elucidate rhizosphere microbial coexistence patterns. Some advancements (e.g., network analysis, coculture experiments, and synthetic communities) that can be applied to plant stress resistance are also updated. This review aims to summarize the key role and potential application prospects of microbial coexistence in the resistance of plants to environmental stresses. Our suggestions, enhancing plant resistance with coexisting microbes, would allow us to gain further knowledge on plant-microbial and microbial-microbial functions, and facilitate translation to more effective measures.


Assuntos
Microbiota , Rizosfera , Microbiologia do Solo , Plantas , Solo , Raízes de Plantas
7.
J Integr Plant Biol ; 65(4): 1059-1076, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36426878

RESUMO

In nature, plants are colonized by various microbes that play essential roles in their growth and health. Heterosis is a natural genetic phenomenon whereby first-generation hybrids exhibit superior phenotypic performance relative to their parents. It remains unclear whether this concept can be extended to the "hybridization" of microbiota from two parents in their descendants and what benefits the hybrid microbiota might convey. Here, we investigated the structure and function of the root microbiota from three hybrid rice varieties and their parents through amplicon sequencing analysis of bacterial 16S ribosomal DNA (rDNA) and fungal internal transcribed spacer (ITS) regions. We show that the bacterial and fungal root microbiota of the varieties are distinct from those of their parental lines and exhibit potential heterosis features in diversity and composition. Moreover, the root bacterial microbiota of hybrid variety LYP9 protects rice against soil-borne fungal pathogens. Systematic analysis of the protective capabilities of individual strains from a 30-member bacterial synthetic community derived from LYP9 roots indicated that community members have additive protective roles. Global transcription profiling analyses suggested that LYP9 root bacterial microbiota activate rice reactive oxygen species production and cell wall biogenesis, contributing to heterosis for protection. In addition, we demonstrate that the protection conferred by the LYP9 root microbiota is transferable to neighboring plants, potentially explaining the observed hybrid-mediated superior effects of mixed planting. Our findings suggest that some hybrids exhibit heterosis in their microbiota composition that promotes plant health, highlighting the potential for microbiota heterosis in breeding hybrid crops.


Assuntos
Microbiota , Oryza , Vigor Híbrido/genética , Solo , Perfilação da Expressão Gênica , Melhoramento Vegetal
8.
Environ Sci Technol ; 56(18): 12975-12987, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067360

RESUMO

Persistent microbial symbioses can confer greater fitness to their host under unfavorable conditions, but manipulating such beneficial interactions necessitates a mechanistic understanding of the consistently important microbiomes for the plant. Here, we examined the phylogenetic profiles and plant-beneficial traits of the core microbiota that consistently inhabits the rhizosphere of four divergent Cd hyperaccumulators and an accumulator. We evidenced the existence of a conserved core rhizosphere microbiota in each plant distinct from that in the non-hyperaccumulating plant. Members of Burkholderiaceae and Sphingomonas were the shared cores across hyperaccumulators and accumulators. Several keystone taxa in the rhizosphere networks were part of the core microbiota, the abundance of which was an important predictor of plant Cd accumulation. Furthermore, an inoculation experiment with synthetic communities comprising isolates belonging to the shared cores indicated that core microorganisms could facilitate plant growth and metal tolerance. Using RNA-based stable isotope probing, we discovered that abundant core taxa overlapped with active rhizobacteria utilizing root exudates, implying that the core rhizosphere microbiota assimilating plant-derived carbon may provide benefits to plant growth and host phenotype such as Cd accumulation. Our study suggests common principles underpinning hyperaccumulator-microbiome interactions, where plants consistently interact with a core set of microbes contributing to host fitness and plant performance. These findings lay the foundation for harnessing the persistent root microbiomes to accelerate the restoration of metal-disturbed soils.


Assuntos
Metais Pesados , Microbiota , Bactérias/genética , Cádmio , Carbono , Filogenia , Raízes de Plantas/microbiologia , Plantas/genética , RNA , Rizosfera , Solo , Microbiologia do Solo
9.
Plant Cell Environ ; 44(5): 1611-1626, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495990

RESUMO

Much effort has been placed on developing microbial inoculants to replace or supplement fertilizers to improve crop productivity and environmental sustainability. However, many studies ignore the dynamics of plant-microbe interactions and the genotypic specificity of the host plant on the outcome of microbial inoculation. Thus, it is important to study temporal plant responses to inoculation in multiple genotypes within a single species. With the implementation of high-throughput phenotyping, the dynamics of biomass and nitrogen (N) accumulation of four sorghum genotypes with contrasting N-use efficiency were monitored upon the inoculation with synthetic microbial communities (SynComs) under high and low-N. Five SynComs comprising bacteria isolated from field grown sorghum were designed based on the overall phylar composition of bacteria and the enriched host compartment determined from a field-based culture independent study of the sorghum microbiome. We demonstrated that the growth response of sorghum to SynCom inoculation is genotype-specific and dependent on plant N status. The sorghum genotypes that were N-use inefficient were more susceptible to the colonization from a diverse set of inoculated bacteria as compared to the N-use efficient lines especially under low-N. By integrating high-throughput phenotyping with sequencing data, our findings highlight the roles of host genotype and plant nutritional status in determining colonization by bacterial synthetic communities.


Assuntos
Bactérias/metabolismo , Microbiota , Nitrogênio/farmacologia , Sorghum/genética , Sorghum/microbiologia , Bactérias/efeitos dos fármacos , Biodiversidade , Clorofila/metabolismo , Genótipo , Fenótipo , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Análise de Componente Principal , Reprodutibilidade dos Testes , Rizosfera , Sorghum/fisiologia , Especificidade da Espécie
10.
Proc Natl Acad Sci U S A ; 115(10): 2425-2430, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453274

RESUMO

Assays to accurately estimate relative fitness of bacteria growing in multistrain communities can advance our understanding of how selection shapes diversity within a lineage. Here, we present a variant of the "evolve and resequence" approach both to estimate relative fitness and to identify genetic variants responsible for fitness variation of symbiotic bacteria in free-living and host environments. We demonstrate the utility of this approach by characterizing selection by two plant hosts and in two free-living environments (sterilized soil and liquid media) acting on synthetic communities of the facultatively symbiotic bacterium Ensifer meliloti We find (i) selection that hosts exert on rhizobial communities depends on competition among strains, (ii) selection is stronger inside hosts than in either free-living environment, and (iii) a positive host-dependent relationship between relative strain fitness in multistrain communities and host benefits provided by strains in single-strain experiments. The greatest changes in allele frequencies in response to plant hosts are in genes associated with motility, regulation of nitrogen fixation, and host/rhizobia signaling. The approach we present provides a powerful complement to experimental evolution and forward genetic screens for characterizing selection in bacterial populations, identifying gene function, and surveying the functional importance of naturally occurring genomic variation.


Assuntos
Aptidão Genética , Medicago , Sinorhizobium meliloti , Microbiologia do Solo , Simbiose , Fenômenos Fisiológicos Bacterianos , Aptidão Genética/genética , Aptidão Genética/fisiologia , Variação Genética , Medicago/microbiologia , Medicago/fisiologia , Fixação de Nitrogênio , Fenótipo , Rizoma/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Biologia Sintética
11.
J Exp Bot ; 71(13): 3878-3901, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32157287

RESUMO

Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent research showed the remarkable importance and range of microbial partners for enhancing the growth and health of plants. However, plant-microbe holobionts are influenced by many different factors, generating complex interactive systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a framework for advancing the application of microbial inoculants in agriculture.


Assuntos
Inoculantes Agrícolas , Agricultura , Fertilizantes , Desenvolvimento Vegetal , Plantas , Microbiologia do Solo
12.
Proc Natl Acad Sci U S A ; 114(12): E2450-E2459, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28275097

RESUMO

Plant-associated microbes are important for the growth and health of their hosts. As a result of numerous prior studies, we know that host genotypes and abiotic factors influence the composition of plant microbiomes. However, the high complexity of these communities challenges detailed studies to define experimentally the mechanisms underlying the dynamics of community assembly and the beneficial effects of such microbiomes on plant hosts. In this work, from the distinctive microbiota assembled by maize roots, through host-mediated selection, we obtained a greatly simplified synthetic bacterial community consisting of seven strains (Enterobacter cloacae, Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum, and Chryseobacterium indologenes) representing three of the four most dominant phyla found in maize roots. By using a selective culture-dependent method to track the abundance of each strain, we investigated the role that each plays in community assembly on roots of axenic maize seedlings. Only the removal of E. cloacae led to the complete loss of the community, and C. pusillum took over. This result suggests that E. cloacae plays the role of keystone species in this model ecosystem. In planta and in vitro, this model community inhibited the phytopathogenic fungus Fusarium verticillioides, indicating a clear benefit to the host. Thus, combined with the selective culture-dependent quantification method, our synthetic seven-species community representing the root microbiome has the potential to serve as a useful system to explore how bacterial interspecies interactions affect root microbiome assembly and to dissect the beneficial effects of the root microbiota on hosts under laboratory conditions in the future.


Assuntos
Bactérias/isolamento & purificação , Zea mays/microbiologia , Bactérias/classificação , Bactérias/genética , Microbiota , Filogenia , Raízes de Plantas/microbiologia , Microbiologia do Solo
13.
Yeast ; 35(10): 559-566, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29752875

RESUMO

Antagonistic yeasts suppress plant pathogenic fungi by various mechanisms, but their biocontrol efficacy also depends on the ability to compete and persist in the environment. The goal of the work presented here was to quantify the composition of synthetic yeast communities in order to determine the competitiveness of different species and identify promising candidates for plant protection. For this purpose, colony counting of distinct species and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS; MALDI biotyping) were used to distinguish different yeast species and to quantify the composition of a synthetic community of six yeasts (Aureobasidium pullulans, Candida subhashii, Cyberlindnera sargentensis, Hanseniaspora sp., Metschnikowia pulcherrima and Pichia kluyveri) over time, on apples and in soil, and in different growth media. These studies revealed important characteristics that predispose the different species for particular applications. For example, the competitiveness and antagonistic activity of C. subhashii was strongly increased in the presence of N-acetylglucosamin as the sole carbon source, M. pulcherrima and A. pullulans were the strongest competitors on apple, and C. sargentensis competed the best in soil microcosms. Based on these laboratory studies, M. pulcherrima and A. pullulans are promising candidates for biocontrol applications against fungal phyllosphere diseases, while C. sargentensis may hold potential for use against soilborne fungal pathogens. These results document the potential of MALDI-TOF MS for the quantitative analysis of synthetic yeast communities and highlight the value of studying microorganisms with relevant functions in moderately complex, synthetic communities and natural substrates rather than as individual isolates.


Assuntos
Antibiose , Agentes de Controle Biológico , Malus/microbiologia , Consórcios Microbianos , Microbiologia do Solo , Leveduras/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Meios de Cultura/química , Pichia/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Leveduras/classificação
14.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38984785

RESUMO

The rhizosphere constitutes a dynamic interface between plant hosts and their associated microbial communities. Despite the acknowledged potential for enhancing plant fitness by manipulating the rhizosphere, the engineering of the rhizosphere microbiome through inoculation has posed significant challenges. These challenges are thought to arise from the competitive microbial ecosystem where introduced microbes must survive, and the absence of adaptation to the specific metabolic and environmental demands of the rhizosphere. Here, we engineered a synthetic rhizosphere community (SRC1) with the anticipation that it would exhibit a selective advantage in colonizing the host Sorghum bicolor, thereby potentially fostering its growth. SRC1 was assembled from bacterial isolates identified either for their potential role in community cohesion through network analysis or for their ability to benefit from host-specific exudate compounds. The growth performance of SRC1 was assessed in vitro on solid media, in planta under gnotobiotic laboratory conditions, and in the field. Our findings reveal that SRC1 cohesion is most robust when cultivated in the presence of the plant host under laboratory conditions, with lineages being lost from the community when grown either in vitro or in a native field setting. We establish that SRC1 effectively promotes the growth of both above- and below-ground plant phenotypes in both laboratory and native field contexts. Furthermore, in laboratory conditions, these growth enhancements correlate with the transcriptional dampening of lignin biosynthesis in the host. Collectively, these results underscore the potential utility of synthetic microbial communities for modulating crop performance in controlled and native environments alike.


Assuntos
Bactérias , Microbiota , Rizosfera , Microbiologia do Solo , Sorghum , Sorghum/microbiologia , Sorghum/crescimento & desenvolvimento , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
15.
Int J Food Microbiol ; 424: 110842, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098161

RESUMO

The study aimed to develop a synthetic microbial community capable of managing postharvest black spot disease in winter jujube. The research revealed that treatment with Debaryomyces nepalensis altered the surface microbial community, reducing the presence of harmful fungi such as Alternaria, Penicillium, Fusarium, and Botrytis, while boosting beneficial bacteria like Pantoea, Bacillus, Staphylococcus, and Pseudomonas, leading to a decreased decay rate in date fruits. A synthetic community was crafted, integrating D. nepalensis with seven other bacterial strains selected for their abundance, compatibility, culturability, and interactions. This community was refined through homo-pore damage experiments and safety assessments to a final formulation consisting of D. nepalensis and six other bacteria: Bacillus subtilis, Bacillus velezensis, Staphylococcus arlettae, Staphylococcus gallinarum, Pseudomonas sp., and Pseudomonas psychrotolerans. Fruit inoculation tests demonstrated that this synthetic community (6 + 1) significantly lowered the incidence and size of black spot lesions compared to single-strain treatments. By the 10th day of storage, the incidence was 69.23 % lower than the control and 52.94 % lower than the group treated solely with D. nepalensis. Mechanistic studies of the synthetic community's antibacterial effects showed that it can produce volatile compounds, proteases, and ß-1,3-glucanase to inhibit pathogen growth. Additionally, the community forms a biofilm to compete for nutrients and induce jujube resistance to disease.


Assuntos
Frutas , Doenças das Plantas , Ziziphus , Ziziphus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Frutas/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Saccharomycetales , Fungos/genética
16.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38503562

RESUMO

Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.


Assuntos
Microbiota , Plântula , Plântula/microbiologia , Sementes , Plantas/microbiologia , Solo
17.
Microbiome ; 12(1): 101, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840214

RESUMO

BACKGROUND: Plant microbiota contributes to plant growth and health, including enhancing plant resistance to various diseases. Despite remarkable progress in understanding diseases resistance in plants, the precise role of rhizosphere microbiota in enhancing watermelon resistance against soil-borne diseases remains unclear. Here, we constructed a synthetic community (SynCom) of 16 core bacterial strains obtained from the rhizosphere of grafted watermelon plants. We further simplified SynCom and investigated the role of bacteria with synergistic interactions in promoting plant growth through a simple synthetic community. RESULTS: Our results demonstrated that the SynCom significantly enhanced the growth and disease resistance of ungrafted watermelon grown in non-sterile soil. Furthermore, analysis of the amplicon and metagenome data revealed the pivotal role of Pseudomonas in enhancing plant health, as evidenced by a significant increase in the relative abundance and biofilm-forming pathways of Pseudomonas post-SynCom inoculation. Based on in vitro co-culture experiments and bacterial metabolomic analysis, we selected Pseudomonas along with seven other members of the SynCom that exhibited synergistic effects with Pseudomonas. It enabled us to further refine the initially constructed SynCom into a simplified SynCom comprising the eight selected bacterial species. Notably, the plant-promoting effects of simplified SynCom were similar to those of the initial SynCom. Furthermore, the simplified SynCom protected plants through synergistic effects of bacteria. CONCLUSIONS: Our findings suggest that the SynCom proliferate in the rhizosphere and mitigate soil-borne diseases through microbial synergistic interactions, highlighting the potential of synergistic effects between microorganisms in enhancing plant health. This study provides a novel insight into using the functional SynCom as a promising solution for sustainable agriculture. Video Abstract.


Assuntos
Citrullus , Fusarium , Microbiota , Doenças das Plantas , Pseudomonas , Rizosfera , Microbiologia do Solo , Citrullus/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas/genética , Resistência à Doença , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia
18.
bioRxiv ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39345414

RESUMO

Mass spectrometry (MS)-based metaproteomics is used to identify and quantify proteins in microbiome samples, with the frequently used methodology being Data-Dependent Acquisition mass spectrometry (DDA-MS). However, DDA-MS is limited in its ability to reproducibly identify and quantify lower abundant peptides and proteins. To address DDA-MS deficiencies, proteomics researchers have started using Data-Independent Acquisition Mass Spectrometry (DIA-MS) for reproducible detection and quantification of peptides and proteins. We sought to evaluate the reproducibility and accuracy of DIA-MS metaproteomic measurements relative to DDA-MS using a mock community of known taxonomic composition. Artificial microbial communities of known composition were analyzed independently in three laboratories using DDA- and DIA-MS acquisition methods. DIA-MS yielded more protein and peptide identifications than DDA-MS in each laboratory. In addition, the protein and peptide identifications were more reproducible in all laboratories and provided an accurate quantification of proteins and taxonomic groups in the samples. We also identified some limitations of current DIA tools when applied to metaproteomic data, highlighting specific needs to improve DIA tools enabling analysis of metaproteomic datasets from complex microbiomes. Ultimately, DIA-MS represents a promising strategy for MS-based metaproteomics due to its large number of detected proteins and peptides, reproducibility, deep sequencing capabilities, and accurate quantitation.

19.
Microbiol Resour Announc ; 13(1): e0081323, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38117066

RESUMO

Bacterial communities in the phyllosphere, the above-ground parts of plants, are diverse yet understudied. These bacteria are important for plant health and also for inter-kingdom interactions with beneficial and pest insect species. Here, we present draft genomes of eight culturable bacterial isolates from leaf surfaces in the Pisum sativum phyllosphere.

20.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39129674

RESUMO

Understanding the ancestral transition from anaerobic to aerobic lifestyles is essential for comprehending life's early evolution. However, the biological adaptations occurring during this crucial transition remain largely unexplored. Thiamine is an important cofactor involved in central carbon metabolism and aerobic respiration. Here, we explored the phylogenetic and global distribution of thiamine-auxotrophic and thiamine-prototrophic bacteria based on the thiamine biosynthetic pathway in 154 838 bacterial genomes. We observed strong coincidences of the origin of thiamine-synthetic bacteria with the "Great Oxygenation Event," indicating that thiamine biosynthesis in bacteria emerged as an adaptation to aerobic respiration. Furthermore, we demonstrated that thiamine-mediated metabolic interactions are fundamental factors influencing the assembly and diversity of bacterial communities by a global survey across 4245 soil samples. Through our newly established stable isotope probing-metabolic modeling method, we uncovered the active utilization of thiamine-mediated metabolic interactions by bacterial communities in response to changing environments, thus revealing an environmental adaptation strategy employed by bacteria at the community level. Our study demonstrates the widespread thiamine-mediated metabolic interactions in bacterial communities and their crucial roles in setting the stage for an evolutionary transition from anaerobic to aerobic lifestyles and subsequent environmental adaptation. These findings provide new insights into early bacterial evolution and their subsequent growth and adaptations to environments.


Assuntos
Bactérias , Filogenia , Microbiologia do Solo , Tiamina , Tiamina/biossíntese , Tiamina/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Adaptação Fisiológica , Aerobiose , Vias Biossintéticas , Genoma Bacteriano , Anaerobiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA