Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(13): 3864-3876, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37155965

RESUMO

Plant morphology and anatomy strongly influence agricultural yield. Crop domestication has strived for desirable growth and developmental traits, such as larger and more fruits and semi-dwarf architecture. Genetic engineering has accelerated rational, purpose-driven engineering of plant development, but it can be unpredictable. Developmental pathways are complex and riddled with environmental and hormonal inputs, as well as feedback and feedforward interactions, which occur at specific times and places in a growing multicellular organism. Rational modification of plant development would probably benefit from precision engineering based on synthetic biology approaches. This review outlines recently developed synthetic biology technologies for plant systems and highlights their potential for engineering plant growth and development. Streamlined and high-capacity genetic construction methods (Golden Gate DNA Assembly frameworks and toolkits) allow fast and variation-series cloning of multigene transgene constructs. This, together with a suite of gene regulation tools (e.g. cell type-specific promoters, logic gates, and multiplex regulation systems), is starting to enable developmental pathway engineering with predictable outcomes in model plant and crop species.


Assuntos
Engenharia Genética , Biologia Sintética , Plantas/genética , DNA , Biologia do Desenvolvimento , Clonagem Molecular
2.
Biochem Biophys Res Commun ; 564: 114-133, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33162026

RESUMO

Central to the study of cognition is being able to specify the Subject that is making decisions and owning memories and preferences. However, all real cognitive agents are made of parts (such as brains made of cells). The integration of many active subunits into a coherent Self appearing at a larger scale of organization is one of the fundamental questions of evolutionary cognitive science. Typical biological model systems, whether basal or advanced, have a static anatomical structure which obscures important aspects of the mind-body relationship. Recent advances in bioengineering now make it possible to assemble, disassemble, and recombine biological structures at the cell, organ, and whole organism levels. Regenerative biology and controlled chimerism reveal that studies of cognition in intact, "standard", evolved animal bodies are just a narrow slice of a much bigger and as-yet largely unexplored reality: the incredible plasticity of dynamic morphogenesis of biological forms that house and support diverse types of cognition. The ability to produce living organisms in novel configurations makes clear that traditional concepts, such as body, organism, genetic lineage, death, and memory are not as well-defined as commonly thought, and need considerable revision to account for the possible spectrum of living entities. Here, I review fascinating examples of experimental biology illustrating that the boundaries demarcating somatic and cognitive Selves are fluid, providing an opportunity to sharpen inquiries about how evolution exploits physical forces for multi-scale cognition. Developmental (pre-neural) bioelectricity contributes a novel perspective on how the dynamic control of growth and form of the body evolved into sophisticated cognitive capabilities. Most importantly, the development of functional biobots - synthetic living machines with behavioral capacity - provides a roadmap for greatly expanding our understanding of the origin and capacities of cognition in all of its possible material implementations, especially those that emerge de novo, with no lengthy evolutionary history of matching behavioral programs to bodyplan. Viewing fundamental questions through the lens of new, constructed living forms will have diverse impacts, not only in basic evolutionary biology and cognitive science, but also in regenerative medicine of the brain and in artificial intelligence.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Animais , Inteligência Artificial , Humanos
3.
Development ; 144(7): 1146-1158, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28351865

RESUMO

Developmental biology is mainly analytical: researchers study embryos, suggest hypotheses and test them through experimental perturbation. From the results of many experiments, the community distils the principles thought to underlie embryogenesis. Verifying these principles, however, is a challenge. One promising approach is to use synthetic biology techniques to engineer simple genetic or cellular systems that follow these principles and to see whether they perform as expected. As I review here, this approach has already been used to test ideas of patterning, differentiation and morphogenesis. It is also being applied to evo-devo studies to explore alternative mechanisms of development and 'roads not taken' by natural evolution.


Assuntos
Desenvolvimento Embrionário , Biologia Sintética/métodos , Animais , Evolução Biológica , Padronização Corporal , Diferenciação Celular , Humanos , Morfogênese
4.
Biochem Soc Trans ; 48(3): 1177-1185, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32510150

RESUMO

The development of natural tissues, organs and bodies depends on mechanisms of patterning and of morphogenesis, typically (but not invariably) in that order, and often several times at different final scales. Using synthetic biology to engineer patterning and morphogenesis will both enhance our basic understanding of how development works, and provide important technologies for advanced tissue engineering. Focusing on mammalian systems built to date, this review describes patterning systems, both contact-mediated and reaction-diffusion, and morphogenetic effectors. It also describes early attempts to connect the two to create self-organizing physical form. The review goes on to consider how these self-organized systems might be modified to increase the complexity and scale of the order they produce, and outlines some possible directions for future research and development.


Assuntos
Padronização Corporal , Morfogênese , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Humanos , Organoides , Receptores Notch/metabolismo , Transdução de Sinais , Biologia Sintética/métodos
5.
J Hist Biol ; 53(2): 295-309, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32358710

RESUMO

Morphological engineering is an emerging research area in synthetic biology. In 2008 "synthetic morphology" was proposed as a prospective approach to engineering self-constructing anatomies by Jamie A. Davies of the University of Edinburgh. Synthetic morphology can establish a new paradigm, according to Davies, insofar as "cells can be programmed to organize themselves into specific, designed arrangements, structures and tissues." It is obvious that this new approach will extrapolate morphology into a new realm beyond the traditional logic of morphological research. However, synthetic morphology is a highly idealized vision of morphology which derives its visionary ideas from morphological engineering and mathematical idealizations in order to understand the principles of molecular morphology. Thus, the question is, if this approach will help to understand morphogenesis better or if it will just enable biologists to engineer morphogenesis. The paper investigates the development of synthetic morphology and its relation to synthetic biology as well as its epistemic gains.

6.
Annu Rev Biomed Eng ; 19: 353-387, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28633567

RESUMO

Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.


Assuntos
Padronização Corporal/fisiologia , Comunicação Celular/fisiologia , Junções Comunicantes/fisiologia , Potenciais da Membrana/fisiologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Animais , Campos Eletromagnéticos , Humanos , Modelos Biológicos
7.
J Anat ; 232(4): 524-533, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29023694

RESUMO

The anatomy of healthy humans shows much minor variation, and twin-studies reveal at least some of this variation cannot be explained genetically. A plausible explanation is that fine-scale anatomy is not specified directly in a genetic programme, but emerges from self-organizing behaviours of cells that, for example, place a new capillary where it happens to be needed to prevent local hypoxia. Self-organizing behaviour can be identified by manipulating growing tissues (e.g. putting them under a spatial constraint) and observing an adaptive change that conserves the character of the normal tissue while altering its precise anatomy. Self-organization can be practically useful in tissue engineering but it is limited; generally, it is good for producing realistic small-scale anatomy but large-scale features will be missing. This is because self-organizing organoids miss critical symmetry-breaking influences present in the embryo: simulating these artificially, for example, with local signal sources, makes anatomy realistic even at large scales. A growing understanding of the mechanisms of self-organization is now allowing synthetic biologists to take their first tentative steps towards constructing artificial multicellular systems that spontaneously organize themselves into patterns, which may soon be extended into three-dimensional shapes.


Assuntos
Variação Anatômica , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/fisiologia , Organoides/fisiologia , Engenharia Tecidual/métodos , Animais , Cães , Retroalimentação Fisiológica/fisiologia , Humanos , Camundongos , Organogênese/fisiologia , Biologia Sintética/métodos
8.
Biochem Soc Trans ; 44(3): 696-701, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284030

RESUMO

Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work.


Assuntos
Diferenciação Celular , Morfogênese , Biologia Sintética/métodos , Engenharia Tecidual/métodos , Animais , Matriz Extracelular , Humanos
9.
Metab Eng ; 33: 109-118, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26620533

RESUMO

Bacterial biofilms outperform planktonic counterparts in whole-cell biocatalysis. The transition between planktonic and biofilm lifestyles of the platform strain Pseudomonas putida KT2440 is ruled by a regulatory network controlling the levels of the trigger signal cyclic di-GMP (c-di-GMP). This circumstance was exploited for designing a genetic device that over-runs the synthesis or degradation of c-di-GMP--thus making P. putida to form biofilms at user's will. For this purpose, the transcription of either yedQ (diguanylate cyclase) or yhjH (c-di-GMP phoshodiesterase) from Escherichia coli was artificially placed under the tight control of a cyclohexanone-responsive expression system. The resulting strain was subsequently endowed with a synthetic operon and tested for 1-chlorobutane biodegradation. Upon addition of cyclohexanone to the culture medium, the thereby designed P. putida cells formed biofilms displaying high dehalogenase activity. These results show that the morphologies and physical forms of whole-cell biocatalysts can be genetically programmed while purposely designing their biochemical activity.


Assuntos
Alcanos/metabolismo , Biofilmes/crescimento & desenvolvimento , Halogênios/metabolismo , Engenharia Metabólica/métodos , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Catálise , Melhoramento Genético/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Front Syst Neurosci ; 16: 768201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401131

RESUMO

Synthetic biology and bioengineering provide the opportunity to create novel embodied cognitive systems (otherwise known as minds) in a very wide variety of chimeric architectures combining evolved and designed material and software. These advances are disrupting familiar concepts in the philosophy of mind, and require new ways of thinking about and comparing truly diverse intelligences, whose composition and origin are not like any of the available natural model species. In this Perspective, I introduce TAME-Technological Approach to Mind Everywhere-a framework for understanding and manipulating cognition in unconventional substrates. TAME formalizes a non-binary (continuous), empirically-based approach to strongly embodied agency. TAME provides a natural way to think about animal sentience as an instance of collective intelligence of cell groups, arising from dynamics that manifest in similar ways in numerous other substrates. When applied to regenerating/developmental systems, TAME suggests a perspective on morphogenesis as an example of basal cognition. The deep symmetry between problem-solving in anatomical, physiological, transcriptional, and 3D (traditional behavioral) spaces drives specific hypotheses by which cognitive capacities can increase during evolution. An important medium exploited by evolution for joining active subunits into greater agents is developmental bioelectricity, implemented by pre-neural use of ion channels and gap junctions to scale up cell-level feedback loops into anatomical homeostasis. This architecture of multi-scale competency of biological systems has important implications for plasticity of bodies and minds, greatly potentiating evolvability. Considering classical and recent data from the perspectives of computational science, evolutionary biology, and basal cognition, reveals a rich research program with many implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.

11.
Commun Integr Biol ; 14(1): 230-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925687

RESUMO

The fields of developmental biology, biomedicine, and artificial life are being revolutionized by advances in synthetic morphology. The next phase of synthetic biology and bioengineering is resulting in the construction of novel organisms (biobots), which exhibit not only morphogenesis and physiology but functional behavior. It is now essential to begin to characterize the behavioral capacity of novel living constructs in terms of their ability to make decisions, form memories, learn from experience, and anticipate future stimuli. These synthetic organisms are highly diverse, and often do not resemble familiar model systems used in behavioral science. Thus, they represent an important context in which to begin to unify and standardize vocabulary and techniques across developmental biology, behavioral ecology, and neuroscience. To facilitate the study of behavior in novel living systems, we present a primer on techniques from the behaviorist tradition that can be used to probe the functions of any organism - natural, chimeric, or synthetic - regardless of the details of their construction or origin. These techniques provide a rich toolkit for advancing the fields of synthetic bioengineering, evolutionary developmental biology, basal cognition, exobiology, and robotics.

12.
J Biol Eng ; 8(1): 26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478005

RESUMO

BACKGROUND: In mammalian development, the formation of most tissues is achieved by a relatively small repertoire of basic morphogenetic events (e.g. cell adhesion, locomotion, apoptosis, etc.), permutated in various sequences to form different tissues. Together with cell differentiation, these mechanisms allow populations of cells to organize themselves into defined geometries and structures, as simple embryos develop into complex organisms. The control of tissue morphogenesis by populations of engineered cells is a potentially very powerful but neglected aspect of synthetic biology. RESULTS: We have assembled a modular library of synthetic morphogenetic driver genes to control (separately) mammalian cell adhesion, locomotion, fusion, proliferation and elective cell death. Here we describe this library and demonstrate its use in the T-REx-293 human cell line to induce each of these desired morphological behaviours on command. CONCLUSIONS: Building on from the simple test systems described here, we want to extend engineered control of morphogenetic cell behaviour to more complex 3D structures that can inform embryologists and may, in the future, be used in surgery and regenerative medicine, making synthetic morphology a powerful tool for developmental biology and tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA