Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.423
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 521-550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382538

RESUMO

Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/etiologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Animais , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Epigênese Genética
2.
Annu Rev Immunol ; 42(1): 235-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38271641

RESUMO

The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Diferenciação Celular , Linhagem da Célula , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Camundongos , Fatores de Transcrição/metabolismo , Transcriptoma , Multiômica
3.
Annu Rev Immunol ; 41: 483-512, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750317

RESUMO

Transforming growth factor ß (TGF-ß) is a key cytokine regulating the development, activation, proliferation, differentiation, and death of T cells. In CD4+ T cells, TGF-ß maintains the quiescence and controls the activation of naive T cells. While inhibiting the differentiation and function of Th1 and Th2 cells, TGF-ß promotes the differentiation of Th17 and Th9 cells. TGF-ß is required for the induction of Foxp3 in naive T cells and the development of regulatory T cells. TGF-ß is crucial in the differentiation of tissue-resident memory CD8+ T cells and their retention in the tissue, whereas it suppresses effector T cell function. In addition, TGF-ß also regulates the generation or function of natural killer T cells, γδ T cells, innate lymphoid cells, and gut intraepithelial lymphocytes. Here I highlight the major findings and recent advances in our understanding of TGF-ß regulation of T cells and provide a personal perspective of the field.


Assuntos
Linfócitos T CD8-Positivos , Fator de Crescimento Transformador beta1 , Animais , Humanos , Diferenciação Celular , Imunidade Inata , Linfócitos/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
Annu Rev Immunol ; 40: 1-14, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34871102

RESUMO

I've had serious misgivings about writing this article, because from living the experience day by day, it's hard to believe my accomplishments merit the attention. To skirt this roadblock, I forced myself to pretend I was in a conversation with my trainees, trying to distill the central driving forces of my career in science. The below chronicles my evolution from would-be astronaut/ballerina to budding developmental biologist to devoted T cell immunologist. It traces my work from a focus on intrathymic events that mold developing T cells into self-major histocompatibility complex (MHC)-restricted lymphocytes to extrathymic events that fine-tune the T cell receptor (TCR) repertoire and impose the finishing touches on T cell maturation. It is a story of a few personal attributes multiplied by generous mentors, good luck, hard work, perseverance, and knowing when to step down.


Assuntos
Complexo Principal de Histocompatibilidade , Linfócitos T , Animais , Diferenciação Celular , Humanos , Timo
5.
Annu Rev Immunol ; 40: 95-119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471838

RESUMO

A high diversity of αß T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.


Assuntos
Sinais (Psicologia) , Receptores de Antígenos de Linfócitos T , Animais , Humanos , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Linfócitos T Reguladores
6.
Annu Rev Immunol ; 39: 449-479, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902310

RESUMO

The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system-microbiota interactions.


Assuntos
Microbiota , Imunidade Adaptativa , Animais , Linfócitos B , Humanos , Imunidade Inata , Linfócitos T
7.
Annu Rev Immunol ; 38: 397-419, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31990620

RESUMO

T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Linfopoese , Linfócitos T/imunologia , Linfócitos T/metabolismo , Acetilação , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Histonas , Humanos , Linfopoese/genética , Linfopoese/imunologia , Metilação , Processamento de Proteína Pós-Traducional , Linfócitos T/citologia , Linfócitos T/enzimologia , Ubiquitinação
8.
Annu Rev Immunol ; 38: 487-510, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017636

RESUMO

Nonclonal innate immune responses mediated by germ line-encoded receptors, such as Toll-like receptors or natural killer receptors, are commonly contrasted with diverse, clonotypic adaptive responses of lymphocyte antigen receptors generated by somatic recombination. However, the Variable (V) regions of antigen receptors include germ line-encoded motifs unaltered by somatic recombination, and theoretically available to mediate nonclonal, innate responses, that are independent of or largely override clonotypic responses. Recent evidence demonstrates that such responses exist, underpinning the associations of particular γδ T cell receptors (TCRs) with specific anatomical sites. Thus, TCRγδ can make innate and adaptive responses with distinct functional outcomes. Given that αß T cells and B cells can also make nonclonal responses, we consider that innate responses of antigen receptor V-regions may be more widespread, for example, inducing states of preparedness from which adaptive clones are better selected. We likewise consider that potent, nonclonal T cell responses to microbial superantigens may reflect subversion of physiologic innate responses of TCRα/ß chains.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Receptores de Antígenos/metabolismo , Animais , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Antígenos/química , Receptores de Antígenos/genética , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
9.
Annu Rev Immunol ; 38: 705-725, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340571

RESUMO

The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/genética , Citocinas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
10.
Annu Rev Immunol ; 38: 421-453, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31990619

RESUMO

Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.


Assuntos
Diferenciação Celular/imunologia , Linfopoese/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Diferenciação Celular/genética , Deleção Clonal , Seleção Clonal Mediada por Antígeno , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfopoese/genética , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Timo/citologia , Timo/imunologia , Timo/metabolismo
11.
Annu Rev Immunol ; 38: 1-21, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31594433

RESUMO

It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αß receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.


Assuntos
Suscetibilidade a Doenças , Transtorno Obsessivo-Compulsivo/etiologia , Transtorno Obsessivo-Compulsivo/metabolismo , Animais , Autoimunidade , Biomarcadores , Morte Celular , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Humanos , Imunidade Inata , Transtorno Obsessivo-Compulsivo/psicologia , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Superantígenos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo
12.
Annu Rev Immunol ; 38: 365-395, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31986070

RESUMO

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.


Assuntos
Suscetibilidade a Doenças , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Imunomodulação , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo
13.
Annu Rev Immunol ; 38: 203-228, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31986071

RESUMO

Mucosal-associated invariant T (MAIT) cells have been attracting increasing attention over the last few years as a potent unconventional T cell subset. Three factors largely account for this emerging interest. Firstly, these cells are abundant in humans, both in circulation and especially in some tissues such as the liver. Secondly is the discovery of a ligand that has uncovered their microbial targets, and also allowed for the development of tools to accurately track the cells in both humans and mice. Finally, it appears that the cells not only have a diverse range of functions but also are sensitive to a range of inflammatory triggers that can enhance or even bypass T cell receptor-mediated signals-substantially broadening their likely impact in health and disease. In this review we discuss how MAIT cells display antimicrobial, homeostatic, and amplifier roles in vivo, and how this may lead to protection and potentially pathology.


Assuntos
Suscetibilidade a Doenças , Homeostase , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Biomarcadores , Interações Hospedeiro-Patógeno , Humanos , Imunidade nas Mucosas , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/microbiologia , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
14.
Annu Rev Immunol ; 37: 201-224, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30576253

RESUMO

The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.


Assuntos
Actinas/metabolismo , Actomiosina/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Citoesqueleto/metabolismo , Sinapses Imunológicas/metabolismo , Linfócitos T/metabolismo , Animais , Apresentação de Antígeno , Humanos , Ativação Linfocitária
15.
Annu Rev Immunol ; 37: 547-570, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30699000

RESUMO

Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.


Assuntos
Biologia Computacional/métodos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Antígenos/imunologia , Antígenos/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Epitopos de Linfócito T/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo
16.
Annu Rev Immunol ; 37: 457-495, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676822

RESUMO

Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Imunoterapia/métodos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/fisiologia , Viroses/imunologia , Animais , Senescência Celular , Doença Crônica , Anergia Clonal , Epigênese Genética , Humanos , Neoplasias/terapia , Viroses/terapia
17.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30526160

RESUMO

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia Adotiva/tendências , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/fisiologia , Animais , Engenharia Genética , Humanos , Neoplasias/imunologia , Linfócitos T/transplante , Estados Unidos , United States Food and Drug Administration
18.
Annu Rev Immunol ; 36: 461-488, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677474

RESUMO

Metabolism drives function, on both an organismal and a cellular level. In T cell biology, metabolic remodeling is intrinsically linked to cellular development, activation, function, differentiation, and survival. After naive T cells are activated, increased demands for metabolic currency in the form of ATP, as well as biomass for cell growth, proliferation, and the production of effector molecules, are met by rewiring cellular metabolism. Consequently, pharmacological strategies are being developed to perturb or enhance selective metabolic processes that are skewed in immune-related pathologies. Here we review the most recent advances describing the metabolic changes that occur during the T cell lifecycle. We discuss how T cell metabolism can have profound effects on health and disease and where it might be a promising target to treat a variety of pathologies.


Assuntos
Metabolismo Energético , Imunidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Humanos , Memória Imunológica , Imunoterapia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Mitocôndrias/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/citologia
19.
Annu Rev Immunol ; 36: 383-409, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677478

RESUMO

The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.


Assuntos
Imunidade Adaptativa , Evolução Biológica , Complexo Principal de Histocompatibilidade/imunologia , Imunidade Adaptativa/genética , Animais , Duplicação Gênica , Estudo de Associação Genômica Ampla , Humanos , Complexo Principal de Histocompatibilidade/genética , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Vertebrados
20.
Annu Rev Immunol ; 36: 127-156, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237129

RESUMO

T cells possess an array of functional capabilities important for host defense against pathogens and tumors. T cell effector functions require the T cell antigen receptor (TCR). The TCR has no intrinsic enzymatic activity, and thus signal transduction from the receptor relies on additional signaling molecules. One such molecule is the cytoplasmic tyrosine kinase ZAP-70, which associates with the TCR complex and is required for initiating the canonical biochemical signal pathways downstream of the TCR. In this article, we describe recent structure-based insights into the regulation and substrate specificity of ZAP-70, and then we review novel methods for determining the role of ZAP-70 catalytic activity-dependent and -independent signals in developing and mature T cells. Lastly, we discuss the disease states in mouse models and humans, which range from immunodeficiency to autoimmunity, that are caused by mutations in ZAP-70.


Assuntos
Suscetibilidade a Doenças , Transdução de Sinais , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Animais , Autoimunidade , Biomarcadores , Catálise , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Fosforilação , Transporte Proteico , Relação Estrutura-Atividade , Especificidade por Substrato , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/antagonistas & inibidores , Proteína-Tirosina Quinase ZAP-70/química , Proteína-Tirosina Quinase ZAP-70/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA