Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Cell ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964327

RESUMO

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.

2.
Annu Rev Biochem ; 91: 61-87, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35363509

RESUMO

Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery.

3.
Cell ; 185(10): 1793-1805.e17, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483372

RESUMO

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.


Assuntos
Química Click , Imagem Óptica , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Mamíferos , Camundongos , Imagem Óptica/métodos
4.
Annu Rev Biochem ; 89: 557-581, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208767

RESUMO

The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.


Assuntos
Química Farmacêutica/métodos , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Técnicas de Sonda Molecular , Terapia de Alvo Molecular/métodos , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Genes Reporter , Humanos , Cinética , Imagem Óptica/métodos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
5.
Annu Rev Biochem ; 88: 383-408, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30939043

RESUMO

The cellular thermal shift assay (CETSA) is a biophysical technique allowing direct studies of ligand binding to proteins in cells and tissues. The proteome-wide implementation of CETSA with mass spectrometry detection (MS-CETSA) has now been successfully applied to discover targets for orphan clinical drugs and hits from phenotypic screens, to identify off-targets, and to explain poly-pharmacology and drug toxicity. Highly sensitive multidimensional MS-CETSA implementations can now also access binding of physiological ligands to proteins, such as metabolites, nucleic acids, and other proteins. MS-CETSA can thereby provide comprehensive information on modulations of protein interaction states in cellular processes, including downstream effects of drugs and transitions between different physiological cell states. Such horizontal information on ligandmodulation in cells is largely orthogonal to vertical information on the levels of different proteins and therefore opens novel opportunities to understand operational aspects of cellular proteomes.


Assuntos
Desenvolvimento de Medicamentos/métodos , Proteoma/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Ligantes , Espectrometria de Massas , Ligação Proteica , Proteoma/química , Proteômica
6.
Annu Rev Biochem ; 83: 341-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905785

RESUMO

Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.


Assuntos
Química Farmacêutica/métodos , Desenho de Fármacos , Inibidores Enzimáticos/química , Proteômica/métodos , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Humanos , Lactonas/química , Fenótipo , Fotoquímica/métodos , Proteoma
7.
Annu Rev Pharmacol Toxicol ; 62: 465-482, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34499524

RESUMO

Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology.


Assuntos
Descoberta de Drogas , Proteoma , Humanos , Terapia de Alvo Molecular , Proteoma/análise , Proteoma/antagonistas & inibidores , Proteoma/metabolismo
8.
Proteomics ; : e2300644, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766901

RESUMO

Thermal proteome profiling (TPP) is a powerful tool for drug target deconvolution. Recently, data-independent acquisition mass spectrometry (DIA-MS) approaches have demonstrated significant improvements to depth and missingness in proteome data, but traditional TPP (a.k.a. CEllular Thermal Shift Assay "CETSA") workflows typically employ multiplexing reagents reliant on data-dependent acquisition (DDA). Herein, we introduce a new experimental design for the Proteome Integral Solubility Alteration via label-free DIA approach (PISA-DIA). We highlight the proteome coverage and sensitivity achieved by using multiple overlapping thermal gradients alongside DIA-MS, which maximizes efficiencies in PISA sample concatenation and safeguards against missing protein targets that exist at high melting temperatures. We demonstrate our extended PISA-DIA design has superior proteome coverage as compared to using tandem-mass tags (TMT) necessitating DDA-MS analysis. Importantly, we demonstrate our PISA-DIA approach has the quantitative and statistical rigor using A-1331852, a specific inhibitor of BCL-xL. Due to the high melt temperature of this protein target, we utilized our extended multiple gradient PISA-DIA workflow to identify BCL-xL. We assert our novel overlapping gradient PISA-DIA-MS approach is ideal for unbiased drug target deconvolution, spanning a large temperature range whilst minimizing target dropout between gradients, increasing the likelihood of resolving the protein targets of novel compounds.

9.
Expert Rev Mol Med ; 26: e6, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604802

RESUMO

Target deconvolution can help understand how compounds exert therapeutic effects and can accelerate drug discovery by helping optimise safety and efficacy, revealing mechanisms of action, anticipate off-target effects and identifying opportunities for therapeutic expansion. Chemoproteomics, a combination of chemical biology with mass spectrometry has transformed target deconvolution. This review discusses modification-free chemoproteomic approaches that leverage the change in protein thermodynamics induced by small molecule ligand binding. Unlike modification-based methods relying on enriching specific protein targets, these approaches offer proteome-wide evaluations, driven by advancements in mass spectrometry sensitivity, increasing proteome coverage and quantitation methods. Advances in methods based on denaturation/precipitation by thermal or chemical denaturation, or by protease degradation are evaluated, emphasising the evolving landscape of chemoproteomics and its potential impact on future drug-development strategies.


Assuntos
Descoberta de Drogas , Proteoma , Humanos , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Descoberta de Drogas/métodos , Espectrometria de Massas , Desenvolvimento de Medicamentos
10.
Chembiochem ; 25(6): e202300773, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266114

RESUMO

Target engagement assays typically detect and quantify the direct physical interaction of a protein of interest and its ligand through stability changes upon ligand binding. Commonly used target engagement methods detect ligand-induced stability by subjecting samples to thermal or proteolytic stress. Here we describe a new variation to these approaches called Isothermal Ligand-induced Resolubilization Assay (ILIRA), which utilizes lyotropic solubility stress to measure ligand binding through changes in target protein solubility. We identified distinct buffer systems and salt concentrations that compromised protein solubility for four diverse proteins: dihydrofolate reductase (DHFR), nucleoside diphosphate-linked moiety X motif 5 (NUDT5), poly [ADP-ribose] polymerase 1 (PARP1), and protein arginine N-methyltransferase 1 (PRMT1). Ligand-induced solubility rescue was demonstrated for these proteins, suggesting that ILIRA can be used as an additional target engagement technique. Differences in ligand-induced protein solubility were assessed by Coomassie blue staining for SDS-PAGE and dot blot, as well as by NanoOrange, Thioflavin T, and Proteostat fluorescence, thus offering flexibility for readout and assay throughput.


Assuntos
Ligação Proteica , Ligantes , Proteólise
11.
Med Res Rev ; 43(6): 2303-2351, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37232495

RESUMO

Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/química , Proteômica , Malária/tratamento farmacológico , Malária/prevenção & controle , Resistência a Medicamentos
12.
Clin Proteomics ; 20(1): 47, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880622

RESUMO

BACKGROUND: Quantification of drug-target binding is critical for confirming that drugs reach their intended protein targets, understanding the mechanism of action, and interpreting dose-response relationships. For covalent inhibitors, target engagement can be inferred by free target levels before and after treatment. Targeted mass spectrometry assays offer precise protein quantification in complex biological samples and have been routinely applied in pre-clinical studies to quantify target engagement in frozen tumor tissues for oncology drug development. However, frozen tissues are often not available from clinical trials so it is critical that assays are applicable to formalin-fixed, paraffin-embedded (FFPE) tissues in order to extend mass spectrometry-based target engagement studies into clinical settings. METHODS: Wild-type RAS and RASG12C was quantified in FFPE tissues by a highly optimized targeted mass spectrometry assay that couples high-field asymmetric waveform ion mobility spectrometry (FAIMS) and parallel reaction monitoring (PRM) with internal standards. In a subset of samples, technical reproducibility was evaluated by analyzing consecutive tissue sections from the same tumor block and biological variation was accessed among adjacent tumor regions in the same tissue section. RESULTS: Wild-type RAS protein was measured in 32 clinical non-small cell lung cancer tumors (622-2525 amol/µg) as measured by FAIMS-PRM mass spectrometry. Tumors with a known KRASG12C mutation (n = 17) expressed a wide range of RASG12C mutant protein (127-2012 amol/µg). The variation in wild-type RAS and RASG12C measurements ranged 0-18% CV across consecutive tissue sections and 5-20% CV among adjacent tissue regions. Quantitative target engagement was then demonstrated in FFPE tissues from 2 xenograft models (MIA PaCa-2 and NCI-H2122) treated with a RASG12C inhibitor (AZD4625). CONCLUSIONS: This work illustrates the potential to expand mass spectrometry-based proteomics in preclinical and clinical oncology drug development through analysis of FFPE tumor biopsies.

13.
Psychol Med ; 53(6): 2252-2262, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34635191

RESUMO

BACKGROUND: Findings from brain imaging studies with small samples can show limited reproducibility. Thus, we tested whether the evidence that a transdiagnostic eating disorder treatment reduces responsivity of brain valuation regions to thin models and high-calorie binge foods, the intervention targets, from a smaller earlier trial emerged when we recruited additional participants. METHODS: Women with DSM-5 eating disorders (N = 138) were randomized to the dissonance-based body project treatment (BPT) or a waitlist control condition and completed functional magnetic resonance imaging (fMRI) scans assessing neural response to thin models and high-calorie foods at pretest and posttest. RESULTS: BPT v. control participants showed significantly greater reductions in responsivity of regions implicated in reward valuation (caudate) and attentional motivation (precuneus) to thin v. average-weight models, echoing findings from the smaller sample. Data from this larger sample also provided novel evidence that BPT v. control participants showed greater reductions in responsivity of regions implicated in reward valuation (ventrolateral prefrontal cortex) and food craving (hippocampus) to high-calorie binge foods v. low-calorie foods, as well as significantly greater reductions in eating disorder symptoms, abstinence from binge eating and purging behaviors, palatability ratings for high calorie foods, monetary value for high-calorie binge foods, and significantly greater increases in attractiveness ratings of average weight models. CONCLUSIONS: Results from this larger sample provide evidence that BPT reduces valuation of the thin ideal and high-calorie binge foods, the intervention targets, per objective brain imaging data, and produces clinically meaningful reductions in eating pathology.


Assuntos
Beleza , Transtornos da Alimentação e da Ingestão de Alimentos , Humanos , Feminino , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Recompensa
14.
Cephalalgia ; 43(12): 3331024231219475, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064318

RESUMO

OBJECTIVE: Preclinical and clinical studies implicate the vascular ATP-sensitive potassium (KATP) channel in the signaling cascades underlying headache and migraine. However, attempts to demonstrate that the KATP channel inhibitor glibenclamide would attenuate triggered headache in healthy volunteers have proven unsuccessful. It is questionable, however, whether target engagement was achieved in these clinical studies. METHODS: Literature data for human glibenclamide pharmacokinetics, plasma protein binding and functional IC50 values were used to predict the KATP receptor occupancy (RO) levels obtained after glibenclamide dosing in the published exploratory clinical headache provocation studies. RO vs. time profiles of glibenclamide were simulated for the pancreatic KATP channel subtype Kir6.2/SUR1 and the vascular subtype Kir6.1/SUR2B. RESULTS: At the clinical dose of 10 mg of glibenclamide used in the headache provocation studies, predicted maximal occupancy levels of up to 90% and up to 26% were found for Kir6.2/SUR1 and Kir6.1/SUR2B, respectively. CONCLUSIONS: The findings of the present study indicate that effective Kir6.1/SUR2B target engagement was not achieved in the clinical headache provocation studies using glibenclamide. Therefore, development of novel selective Kir6.1/SUR2B inhibitors, with good bioavailability and low plasma protein binding, is required to reveal the potential of KATP channel inhibition in the treatment of migraine.


Assuntos
Transtornos de Enxaqueca , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Glibureto/uso terapêutico , Glibureto/farmacologia , Receptores de Sulfonilureias/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cefaleia , Transtornos de Enxaqueca/tratamento farmacológico , Trifosfato de Adenosina/metabolismo
15.
Br J Clin Pharmacol ; 89(12): 3573-3583, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37452623

RESUMO

AIMS: KCL-286 is an orally available agonist that activates the retinoic acid receptor (RAR) ß2, a transcription factor which stimulates axonal outgrowth. The investigational medicinal product is being developed for treatment of spinal cord injury (SCI). This adaptive dose escalation study evaluated the tolerability, safety and pharmacokinetics and pharmacodynamic activity of KCL-286 in male healthy volunteers to establish dosing to be used in the SCI patient population. METHODS: The design was a double blind, randomized, placebo-controlled dose escalation study in 2 parts: a single ascending dose adaptive design with a food interaction arm, and a multiple ascending dose design. RARß2 mRNA expression was evaluated in white blood cells. RESULTS: At the highest single and multiple ascending doses (100 mg), no trends or clinically important differences were noted in the incidence or intensity of adverse events (AEs), serious AEs or other safety assessments with none leading to withdrawal from the study. The AEs were dry skin, rash, skin exfoliation, raised liver enzymes and eye disorders. There was an increase in mean maximum observed concentration and area under the plasma concentration-time curve up to 24 h showing a trend to subproportionality with dose. RARß2 was upregulated by the investigational medicinal product in white blood cells. CONCLUSION: KCL-286 was well tolerated by healthy human participants following doses that exceeded potentially clinically relevant plasma exposures based on preclinical in vivo models. Target engagement shows the drug candidate activates its receptor. These findings support further development of KCL-286 as a novel oral treatment for SCI.


Assuntos
Drogas em Investigação , Receptores do Ácido Retinoico , Humanos , Masculino , Voluntários Saudáveis , Relação Dose-Resposta a Droga , Área Sob a Curva , Método Duplo-Cego
16.
Br J Clin Pharmacol ; 89(1): 380-389, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36000981

RESUMO

AIMS: Targeting the complement factor 5a receptor 1 (C5a1 receptor) offers potential to treat various autoimmune diseases. The C5a1 receptor antagonist ACT-1014-6470 was well tolerated in a single-ascending dose study in healthy subjects. This double-blind, randomized, placebo-controlled study aimed to investigate the safety, tolerability, pharmacokinetics (PK) and target engagement of multiple-ascending doses of ACT-1014-6470. METHODS: Per dose level, 10 healthy male and female subjects of nonchildbearing potential (1:1 sex ratio) were enrolled to assess 30, 60 and 120 mg ACT-1014-6470 administered twice daily for 4.5 days under fed conditions. Adverse events, clinical laboratory data, vital signs, electrocardiogram and PK blood samples were collected up to 120 h post last dose and ex vivo stimulated matrix metalloproteinase 9 was quantified as target engagement biomarker. At the 60-mg dose level, PK samples were collected until 8 weeks post last dose. RESULTS: The total adverse event number was 57 and no treatment-related safety pattern was apparent. At steady state, ACT-1014-6470 reached maximum plasma concentrations after 2-3 h and the half-life estimated up to Day 10 was 115-146 h across dose levels. Exposure parameters increased dose-proportionally, steady state was attained between Day 3-5, and ACT-1014-6470 accumulated 2-fold. At the 60-mg dose level, ACT-1014-6470 was quantifiable until 8 weeks after the last dose. Matrix metalloproteinase 9 release was suppressed to endogenous background concentrations up to the last sampling time point, confirming sustained target engagement of ACT-1014-6470. CONCLUSION: The compound was generally safe and well tolerated at all dose levels, warranting further clinical investigations.


Assuntos
Fator Va , Metaloproteinase 9 da Matriz , Feminino , Humanos , Masculino , Administração Oral , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Voluntários Saudáveis
17.
Methods ; 205: 83-88, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764246

RESUMO

In the development of therapeutics, it is important to establish engagement of a compound to its intended target and identify other targets it binds to. Methods for demonstrating target engagement in the growing field of RNA-targeted therapeutics are therefore needed. We present a detailed protocol for Photoaffinity Evaluation of RNA Ligation-Sequencing (PEARL-seq), a platform for determining interactions between small molecule ligands and their target RNA(s). PEARL-seq allows detection of binding and crosslinking events with single nucleotide resolution and allows measurement of enrichment of the target RNA relative to all other RNAs. PEARL-seq is a valuable tool in the effort to verify bona fide RNA-ligand interactions.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , RNA , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ligantes , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos
18.
J Nanobiotechnology ; 21(1): 478, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087362

RESUMO

BACKGROUND: Impaired brain energy metabolism has been observed in many neurodegenerative diseases, including Parkinson's disease (PD) and multiple sclerosis (MS). In both diseases, mitochondrial dysfunction and energetic impairment can lead to neuronal dysfunction and death. CNM-Au8® is a suspension of faceted, clean-surfaced gold nanocrystals that catalytically improves energetic metabolism in CNS cells, supporting neuroprotection and remyelination as demonstrated in multiple independent preclinical models. The objective of the Phase 2 REPAIR-MS and REPAIR-PD clinical trials was to investigate the effects of CNM-Au8, administered orally once daily for twelve or more weeks, on brain phosphorous-containing energy metabolite levels in participants with diagnoses of relapsing MS or idiopathic PD, respectively. RESULTS: Brain metabolites were measured using 7-Tesla 31P-MRS in two disease cohorts, 11 participants with stable relapsing MS and 13 participants with PD (n = 24 evaluable post-baseline scans). Compared to pre-treatment baseline, the mean NAD+/NADH ratio in the brain, a measure of energetic capacity, was significantly increased by 10.4% after 12 + weeks of treatment with CNM-Au8 (0.584 units, SD: 1.3; p = 0.037, paired t-test) in prespecified analyses of the combined treatment cohorts. Each disease cohort concordantly demonstrated increases in the NAD+/NADH ratio but did not reach significance individually (p = 0.11 and p = 0.14, PD and MS cohorts, respectively). Significant treatment effects were also observed for secondary and exploratory imaging outcomes, including ß-ATP and phosphorylation potential across both cohorts. CONCLUSIONS: Our results demonstrate brain target engagement of CNM-Au8 as a direct modulator of brain energy metabolism, and support the further investigation of CNM-Au8 as a potential disease modifying drug for PD and MS.


Assuntos
Esclerose Múltipla , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Esclerose Múltipla/tratamento farmacológico , NAD/metabolismo , NAD/uso terapêutico , Nanomedicina , Encéfalo/metabolismo
19.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049713

RESUMO

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1, we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In-cell target engagement for PLK1 was in good agreement with the reported cellular potency for the inhibition of cell proliferation. Probe 11 enabled the investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib via NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases , Proliferação de Células , Mitose , Inibidores de Proteínas Quinases/farmacologia
20.
Chembiochem ; 23(20): e202200284, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36040838

RESUMO

Target engagement and the biodistribution of exogenously administered small molecules is rarely homogenous. Methods to determine the biodistribution at the cellular level are limited by the ability to detect the small molecule and simultaneously identify the cell types or tissue structures with which it is associated. The highly multiplexed nature of mass cytometry could facilitate these studies provided a heavy isotope label was available in the molecule of interest. Here we show it is possible to append a tellurophene to a known chemotherapeutic, teniposide, to follow this molecule in vivo. A semi-synthetic approach offers an efficient route to the teniposide analogue which is found to have similar characteristics when compared with the parent teniposide in vitro. Using mass cytometry we find the teniposide analogue has significant nonspecific binding to cells. In vivo the tellurium bearing teniposide produces the expected DNA damage in a PANC-1 xenograft model. The distribution of Te in the tissue is near the limits of detection and further work will be required to characterize the localization of this analogue with respect to cell type distributions.


Assuntos
Telúrio , Teniposídeo , Humanos , Distribuição Tecidual , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA