Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Neuroimage ; 287: 120519, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280690

RESUMO

Functional brain networks (FBNs) are spatial patterns of brain function that play a critical role in understanding human brain function. There are many proposed methods for mapping the spatial patterns of brain function, however they oversimplify the underlying assumptions of brain function and have various limitations such as linearity and independence. Additionally, current methods fail to account for the dynamic nature of FBNs, which limits their effectiveness in accurately characterizing these networks. To address these limitations, we present a novel deep learning and spatial-wise attention based model called Spatial-Temporal Convolutional Attention (STCA) to accurately model dynamic FBNs. Specifically, we train STCA in a self-supervised manner by utilizing a Convolutional Autoencoder to guide the STCA module in assigning higher attention weights to regions of functional activity. To validate the reliability of the results, we evaluate our approach on the HCP-task motor behavior dataset, the experimental results demonstrate that the STCA derived FBNs have higher spatial similarity with the templates and that the spatial similarity between the templates and the FBNs derived by STCA fluctuates with the task design over time, suggesting that STCA can reflect the dynamic changes of brain function, providing a powerful tool to better understand human brain function. Code is available at https://github.com/SNNUBIAI/STCAE.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
2.
Hum Brain Mapp ; 45(5): e26664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520370

RESUMO

Schizophrenia is a chronic psychiatric disorder with characteristic symptoms of delusions, hallucinations, lack of motivation, and paucity of thought. Recent evidence suggests that the symptoms of schizophrenia, negative symptoms in particular, vary widely between the sexes and that symptom onset is earlier in males. A better understanding of sex-based differences in functional magnetic resonance imaging (fMRI) studies of schizophrenia may provide a key to understanding sex-based symptom differences. This study aimed to summarize sex-based functional magnetic resonance imaging (fMRI) differences in brain activity of patients with schizophrenia. We searched PubMed and Scopus to find fMRI studies that assessed sex-based differences in the brain activity of patients with schizophrenia. We excluded studies that did not evaluate brain activity using fMRI, did not evaluate sex differences, and were nonhuman or in vitro studies. We found 12 studies that met the inclusion criteria for the current systematic review. Compared to females with schizophrenia, males with schizophrenia showed more blood oxygen level-dependent (BOLD) activation in the cerebellum, the temporal gyrus, and the right precuneus cortex. Male patients also had greater occurrence of low-frequency fluctuations in cerebral blood flow in frontal and parietal lobes and the insular cortex, while female patients had greater occurrence of low-frequency fluctuations in the hippocampus, parahippocampus, and lentiform nucleus. The current study summarizes fMRI studies that evaluated sex-based fMRI brain differences in schizophrenia that may help to shed light on the underlying pathophysiology and further understanding of sex-based differences in the clinical presentation and course of the disorder.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Caracteres Sexuais , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia
3.
Cogn Affect Behav Neurosci ; 24(4): 694-706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38819625

RESUMO

Proactive aggression refers to deliberate and unprovoked behavior, typically motivated by personal gain or expected reward. Reward expectancy is generally recognized as a critical factor that may influence proactive aggression, but its neural mechanisms remain unknown. We conducted a task-based functional magnetic resonance imaging (fMRI) experiment to investigate the relationship between reward expectancy and proactive aggression. 37 participants (20 females, mean age = 20.8 ± 1.42, age range = 18-23 years) completed a reward-harm task. In the experiment, reward valence expectancy and reward possibility expectancy were manipulated respectively by varying amounts (low: 0.5-1.5 yuan; high: 10.5-11.5 yuan) and possibilities (low: 10%-30%; high: 70%-90%) of money that participants could obtain by choosing to aggress. Participants received fMRI scans throughout the experiment. Brain activation regions associated with reward expectancy mainly involve the middle frontal gyrus, lingual gyrus, inferior temporal gyrus, anterior cuneus, caudate nucleus, inferior frontal gyrus, cingulate gyrus, anterior central gyrus, and posterior central gyrus. Associations between brain activation and reward expectancy in the left insula, left middle frontal gyrus, left thalamus, and right middle frontal gyrus were found to be related to proactive aggression. Furthermore, the brain activation regions primarily involved in proactive aggression induced by reward expectancy were the insula, inferior frontal gyrus, inferior temporal gyrus, pallidum, and caudate nucleus. Under conditions of high reward expectancy, participants engage in more proactive aggressive behavior. Reward expectancy involves the activation of reward- and social-cognition-related brain regions, and these associations are instrumental in proactive aggressive decisions.


Assuntos
Agressão , Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Recompensa , Humanos , Feminino , Masculino , Agressão/fisiologia , Adulto Jovem , Adolescente , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Motivação/fisiologia
4.
Cereb Cortex ; 33(6): 2682-2703, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697648

RESUMO

Despite decades of costly research, we still cannot accurately predict individual differences in cognition from task-based functional magnetic resonance imaging (fMRI). Moreover, aiming for methods with higher prediction is not sufficient. To understand brain-cognition relationships, we need to explain how these methods draw brain information to make the prediction. Here we applied an explainable machine-learning (ML) framework to predict cognition from task-based fMRI during the n-back working-memory task, using data from the Adolescent Brain Cognitive Development (n = 3,989). We compared 9 predictive algorithms in their ability to predict 12 cognitive abilities. We found better out-of-sample prediction from ML algorithms over the mass-univariate and ordinary least squares (OLS) multiple regression. Among ML algorithms, Elastic Net, a linear and additive algorithm, performed either similar to or better than nonlinear and interactive algorithms. We explained how these algorithms drew information, using SHapley Additive explanation, eNetXplorer, Accumulated Local Effects, and Friedman's H-statistic. These explainers demonstrated benefits of ML over the OLS multiple regression. For example, ML provided some consistency in variable importance with a previous study and consistency with the mass-univariate approach in the directionality of brain-cognition relationships at different regions. Accordingly, our explainable-ML framework predicted cognition from task-based fMRI with boosted prediction and explainability over standard methodologies.


Assuntos
Individualidade , Imageamento por Ressonância Magnética , Adolescente , Humanos , Imageamento por Ressonância Magnética/métodos , Cognição , Encéfalo/diagnóstico por imagem , Algoritmos , Aprendizado de Máquina
5.
Psychiatry Clin Neurosci ; 78(3): 157-168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013639

RESUMO

The emergence of machine learning (ML) techniques has opened up new avenues for identifying biomarkers associated with schizophrenia (SCZ) using task-related fMRI (t-fMRI) designs. To evaluate the effectiveness of this approach, we conducted a comprehensive meta-analysis of 31 t-fMRI studies using a bivariate model. Our findings revealed a high overall sensitivity of 0.83 and specificity of 0.82 for t-fMRI studies. Notably, neuropsychological domains modulated the classification performance, with selective attention demonstrating a significantly higher specificity than working memory (ß = 0.98, z = 2.11, P = 0.04). Studies involving older, chronic patients with SCZ reported higher sensitivity (P <0.015) and specificity (P <0.001) than those involving younger, first-episode patients or high-risk individuals for psychosis. Additionally, we found that the severity of negative symptoms was positively associated with the specificity of the classification model (ß = 7.19, z = 2.20, P = 0.03). Taken together, these results support the potential of using task-based fMRI data in combination with machine learning techniques to identify biomarkers related to symptom outcomes in SCZ, providing a promising avenue for improving diagnostic accuracy and treatment efficacy. Future attempts to deploy ML classification should consider the factors of algorithm choice, data quality and quantity, as well as issues related to generalization.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Biomarcadores
6.
J Neuroeng Rehabil ; 21(1): 169, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304930

RESUMO

BACKGROUND: Delivering HD-tDCS on individual motor hotspot with optimal electric fields could overcome challenges of stroke heterogeneity, potentially facilitating neural activation and improving motor function for stroke survivors. However, the intervention effect of this personalized HD-tDCS has not been explored on post-stroke motor recovery. In this study, we aim to evaluate whether targeting individual motor hotspot with HD-tDCS followed by EMG-driven robotic hand training could further facilitate the upper extremity motor function for chronic stroke survivors. METHODS: In this pilot randomized controlled trial, eighteen chronic stroke survivors were randomly allocated into two groups. The HDtDCS-group (n = 8) received personalized HD-tDCS using task-based fMRI to guide the stimulation on individual motor hotspot. The Sham-group (n = 10) received only sham stimulation. Both groups underwent 20 sessions of training, each session began with 20 min of HD-tDCS and was then followed by 60 min of robotic hand training. Clinical scales (Fugl-meyer Upper Extremity scale, FMAUE; Modified Ashworth Scale, MAS), and neuroimaging modalities (fMRI and EEG-EMG) were conducted before, after intervention, and at 6-month follow-up. Two-way repeated measures analysis of variance was used to compare the training effect between HDtDCS- and Sham-group. RESULTS: HDtDCS-group demonstrated significantly better motor improvement than the Sham-group in terms of greater changes of FMAUE scores (F = 6.5, P = 0.004) and MASf (F = 3.6, P = 0.038) immediately and 6 months after the 20-session intervention. The task-based fMRI activation significantly shifted to the ipsilesional motor area in the HDtDCS-group, and this activation pattern increasingly concentrated on the motor hotspot being stimulated 6 months after training within the HDtDCS-group, whereas the increased activation is not sustainable in the Sham-group. The neuroimaging results indicate that neural plastic changes of the HDtDCS-group were guided specifically and sustained as an add-on effect of the stimulation. CONCLUSIONS: Stimulating the individual motor hotspot before robotic hand training could further enhance brain activation in motor-related regions that promote better motor recovery for chronic stroke. TRIAL REGISTRATION: This study was retrospectively registered in ClinicalTrials.gov (ID NCT05638464).


Assuntos
Eletromiografia , Mãos , Robótica , Reabilitação do Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Extremidade Superior , Humanos , Masculino , Projetos Piloto , Feminino , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral/métodos , Robótica/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Imageamento por Ressonância Magnética , Idoso , Recuperação de Função Fisiológica/fisiologia , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Adulto
7.
Int J Neuropsychopharmacol ; 26(1): 20-31, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36173403

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is an effective treatment for patients suffering from depression. Yet the exact neurobiological mechanisms underlying the efficacy of ECT and indicators of who might respond best to it remain to be elucidated. Identifying neural markers that can inform about an individual's response to ECT would enable more optimal treatment strategies and increase clinical efficacy. METHODS: Twenty-one acutely depressed inpatients completed an emotional working memory task during functional magnetic resonance imaging before and after receiving treatment with ECT. Neural activity was assessed in 5 key regions associated with the pathophysiology of depression: bilateral dorsolateral prefrontal cortex and pregenual, subgenual, and dorsal anterior cingulate cortex. Associations between brain activation and clinical improvement, as reflected by Montgomery-Åsberg Depression Rating Scale scores, were computed using linear regression models, t tests, and Pearson correlational analyses. RESULTS: Significant neurobiological prognostic markers or changes in neural activity from pre- to post ECT did not emerge. CONCLUSIONS: We could not confirm normalization effects and did not find significant neural markers related to treatment response. These results demonstrate that the search for reliable and clinically useful biomarkers for ECT treatment remains in its initial stages and still faces challenges.


Assuntos
Eletroconvulsoterapia , Humanos , Eletroconvulsoterapia/métodos , Resultado do Tratamento , Giro do Cíngulo/diagnóstico por imagem , Emoções , Imageamento por Ressonância Magnética
8.
Psychol Med ; 53(8): 3387-3395, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35916600

RESUMO

BACKGROUND: Cognitive-behavior therapy (CBT) is a well-established first-line intervention for anxiety-related disorders, including specific phobia, social anxiety disorder, panic disorder/agoraphobia, generalized anxiety disorder, obsessive-compulsive disorder, and posttraumatic stress disorder. Several neural predictors of CBT outcome for anxiety-related disorders have been proposed, but previous results are inconsistent. METHODS: We conducted a systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) studies investigating whole-brain predictors of CBT outcome in anxiety-related disorders (17 studies, n = 442). RESULTS: Across different tasks, we observed that brain response in a network of regions involved in salience and interoception processing, encompassing fronto-insular (the right inferior frontal gyrus-anterior insular cortex) and fronto-limbic (the dorsomedial prefrontal cortex-dorsal anterior cingulate cortex) cortices was strongly associated with a positive CBT outcome. CONCLUSIONS: Our results suggest that there are robust neural predictors of CBT outcome in anxiety-related disorders that may eventually lead (probably in combination with other data) to develop personalized approaches for the treatment of these mental disorders.


Assuntos
Terapia Cognitivo-Comportamental , Imageamento por Ressonância Magnética , Humanos , Transtornos de Ansiedade/diagnóstico por imagem , Transtornos de Ansiedade/terapia , Terapia Cognitivo-Comportamental/métodos , Ansiedade , Cognição
9.
Sensors (Basel) ; 23(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37447716

RESUMO

Spatial smoothing is a preprocessing step applied to neuroimaging data to enhance data quality by reducing noise and artifacts. However, selecting an appropriate smoothing kernel size can be challenging as it can lead to undesired alterations in final images and functional connectivity networks. However, there is no sufficient information about the effects of the Gaussian kernel size on group-level results for different cases yet. This study investigates the influence of kernel size on functional connectivity networks and network parameters in whole-brain rs-fMRI and tb-fMRI analyses of healthy adults. The analysis includes {0, 2, 4, 6, 8, 10} mm kernels, commonly used in practical analyses, covering all major brain networks. Graph theoretical measures such as betweenness centrality, global/local efficiency, clustering coefficient, and average path length are examined for each kernel. Additionally, principal component analysis (PCA) and independent component analysis (ICA) parameters, namely kurtosis and skewness, are evaluated for the functional images. The findings demonstrate that kernel size directly affects node connections, resulting in modifications to functional network structures and PCA/ICA parameters. However, network metrics exhibit greater resilience to these changes.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Descanso , Neuroimagem
10.
Neuroimage ; 253: 119095, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304266

RESUMO

Recent functional magnetic resonance imaging (fMRI) studies revealed lower neural activation during processing of an n-back task following working memory training, indicating a training-related increase in neural efficiency. In the present study, we asked if the training induced regional neural activation is accompanied by changes in glucose consumption. An active control and an experimental group of healthy middle-aged volunteers conducted 32 sessions of visual and verbal n-back trainings over 8 weeks. We analyzed data of 52 subjects (25 experimental and 27 control group) for practice effects underlying verbal working memory task and 50 subjects (24 experimental and 26 control group) for practice effects underlying visual WM task. The samples of these two tasks were nearly identical (data of 47 subjects were available for both verbal and visual tasks). Both groups completed neuroimaging sessions at a hybrid PET/MR system before and after training. Each session included criterion task fMRI and resting state positron emission tomography with FDG (FDG-PET). As reported previously, lower neural activation following n-back training was found in regions of the fronto-parieto-cerebellar circuitry during a verbal n-back task. Notably, these changes co-occurred spatially with a higher relative FDG-uptake. Decreased neural activation within regions of the fronto-parietal network during visual n-back task did not show co-occurring changes in relative FDG-uptake. There was no direct association between neuroimaging and behavioral measures, which could be due to the inter-subjects' variability in reaching capacity limits. Our findings provide new details for working memory training induced neural efficiency on a molecular level by integrating FDG-PET and fMRI measures.


Assuntos
Fluordesoxiglucose F18 , Memória de Curto Prazo , Encéfalo/fisiologia , Glucose/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos
11.
Hum Brain Mapp ; 43(7): 2181-2203, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35072300

RESUMO

Many recent studies have revealed that spatial interactions of functional brain networks derived from fMRI data can well model functional connectomes of the human brain. However, it has been rarely explored what the energy consumption characteristics are for such spatial interactions of macro-scale functional networks, which remains crucial for the understanding of brain organization, behavior, and dynamics. To explore this unanswered question, this article presents a novel framework for quantitative assessment of energy consumptions of macro-scale functional brain network's spatial interactions via two main effective computational methodologies. First, we designed a novel scheme combining dictionary learning and hierarchical clustering to derive macro-scale consistent brain network templates that can be used to define a common reference space for brain network interactions and energy assessments. Second, the control energy consumption for driving the brain networks during their spatial interactions is computed from the viewpoint of the linear network control theory. Especially, the energetically favorable brain networks were identified and their energy characteristics were comprehensively analyzed. Experimental results on the Human Connectome Project (HCP) task-based fMRI (tfMRI) data showed that the proposed methods can reveal meaningful, diverse energy consumption patterns of macro-scale network interactions. In particular, those networks present remarkable differences in energy consumption. The energetically least favorable brain networks are stable and consistent across HCP tasks such as motor, language, social, and working memory tasks. In general, our framework provides a new perspective to characterize human brain functional connectomes by quantitative assessment for the energy consumption of spatial interactions of macro-scale brain networks.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo , Rede Nervosa/diagnóstico por imagem
12.
Appetite ; 175: 106074, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525333

RESUMO

Episodic memory formation is fundamental to cognition and plays a key role in eating behaviors, indirectly promoting the maintenance and acceleration of weight gain. Impaired episodic memory function is a hallmark of people with overweight/obesity, nevertheless, little research has been conducted to explore the effects of overweight/obesity on neural networks associated with episodic memory. The current study aimed to unravel the behavioral responses and neurocognitive mechanisms underlying the episodic memory for food and non-food cues in females with overweight/obesity. To explore this issue, a group of females with overweight/obesity (n = 26) and a group of age-matched females with healthy weight (n = 28) participated in a functional magnetic resonance imaging (fMRI) event-related episodic memory paradigm, during which pictures of palatable food and pictures of neutral daily necessities were presented. Whole-brain analyses revealed differential engagement in several neural regions between the groups during an episodic memory task. Specifically, compared to the healthy weight controls, females with overweight/obesity exhibited reduced brain activity in the temporal, parietal, and frontal regions during episodic memory encoding and successful retrieval of both food and non-food cues. Additionally, activation patterns in the left hippocampus and right olfactory cortex of females with and without overweight/obesity suggested that item memory changed according to the type of stimuli presented during item memory. Specifically, females with overweight/obesity showed greater engagement of the left hippocampus and right olfactory cortex when processing food cues, but less activation of the left hippocampus and right olfactory cortex when presented with non-food cues. Consistent with the obesity and suboptimal food-related decision theoretical model, these findings provide evidence of dissociation of the neural underpinnings of episodic memory in females with overweight/obesity and underline important effects of overweight/obesity on brain functions related to episodic memory.

13.
Eur J Cancer Care (Engl) ; 30(4): e13428, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33592671

RESUMO

PURPOSE: Resting-state functional Magnetic Resonance Imaging (rs-fMRI) is suggested to be a viable option for pre-operative mapping for patients with brain tumours. However, it remains an open issue whether the tool is useful in the clinical setting compared to task-based fMRI (T-fMRI) and intraoperative mapping. Thus, a systematic review was conducted to investigate the usefulness of this technique. METHODS: A systematic literature search of rs-fMRI methods applied as a pre-operative mapping tool was conducted using the PubMed/MEDLINE and Cochrane Library electronic databases following PRISMA guidelines. RESULTS: Results demonstrated that 50% (six out of twelve) of the studies comparing rs-fMRI and T-fMRI showed good concordance for both language and sensorimotor networks. In comparison to intraoperative mapping, 86% (six out of seven) studies found a good agreement to rs-fMRI. Finally, 87% (twenty out of twenty-three) studies agreed that rs-fMRI is a suitable and useful pre-operative mapping tool. CONCLUSIONS: rs-fMRI is a promising technique for pre-operative mapping in assessing the functional brain areas. However, the agreement between rs-fMRI with other techniques, including T-fMRI and intraoperative maps, is not yet optimal. Studies to ascertain and improve the sophistication in pre-processing of rs-fMRI imaging data are needed.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Encéfalo , Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Humanos , Idioma
14.
Neuroimage ; 212: 116601, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32036019

RESUMO

Replicating results (i.e. obtaining consistent results using a new independent dataset) is an essential part of good science. As replicability has consequences for theories derived from empirical studies, it is of utmost importance to better understand the underlying mechanisms influencing it. A popular tool for non-invasive neuroimaging studies is functional magnetic resonance imaging (fMRI). While the effect of underpowered studies is well documented, the empirical assessment of the interplay between sample size and replicability of results for task-based fMRI studies remains limited. In this work, we extend existing work on this assessment in two ways. Firstly, we use a large database of 1400 subjects performing four types of tasks from the IMAGEN project to subsample a series of independent samples of increasing size. Secondly, replicability is evaluated using a multi-dimensional framework consisting of 3 different measures: (un)conditional test-retest reliability, coherence and stability. We demonstrate not only a positive effect of sample size, but also a trade-off between spatial resolution and replicability. When replicability is assessed voxelwise or when observing small areas of activation, a larger sample size than typically used in fMRI is required to replicate results. On the other hand, when focussing on clusters of voxels, we observe a higher replicability. In addition, we observe variability in the size of clusters of activation between experimental paradigms or contrasts of parameter estimates within these.


Assuntos
Mapeamento Encefálico/normas , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Tamanho da Amostra , Mapeamento Encefálico/métodos , Humanos , Reprodutibilidade dos Testes
15.
Hum Brain Mapp ; 41(3): 797-814, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31692177

RESUMO

Resting-state functional magnetic resonance imaging (rsfMRI) is a promising task-free functional imaging approach, which may complement or replace task-based fMRI (tfMRI) in patients who have difficulties performing required tasks. However, rsfMRI is highly sensitive to head movement and physiological noise, and validation relative to tfMRI and intraoperative electrocortical mapping is still necessary. In this study, we investigate (a) the feasibility of real-time rsfMRI for presurgical mapping of eloquent networks with monitoring of data quality in patients with brain tumors and (b) rsfMRI localization of eloquent cortex compared with tfMRI and intraoperative electrocortical stimulation (ECS) in retrospective analysis. Five brain tumor patients were studied with rsfMRI and tfMRI on a clinical 3T scanner using MultiBand(8)-echo planar imaging (EPI) with repetition time: 400 ms. Moving-averaged sliding-window correlation analysis with regression of motion parameters and signals from white matter and cerebrospinal fluid was used to map sensorimotor and language resting-state networks. Data quality monitoring enabled rapid optimization of scan protocols, early identification of task noncompliance, and head movement-related false-positive connectivity to determine scan continuation or repetition. Sensorimotor and language resting-state networks were identifiable within 1 min of scan time. The Euclidean distance between ECS and rsfMRI connectivity and task-activation in motor cortex, Broca's, and Wernicke's areas was 5-10 mm, with the exception of discordant rsfMRI and ECS localization of Wernicke's area in one patient due to possible cortical reorganization and/or altered neurovascular coupling. This study demonstrates the potential of real-time high-speed rsfMRI for presurgical mapping of eloquent cortex with real-time data quality control, and clinically acceptable concordance of rsfMRI with tfMRI and ECS localization.


Assuntos
Mapeamento Encefálico/normas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão/normas , Imagem Ecoplanar/normas , Eletrocorticografia/normas , Rede Nervosa/diagnóstico por imagem , Cuidados Pré-Operatórios , Adulto , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Imagem de Tensor de Difusão/métodos , Imagem Ecoplanar/métodos , Estimulação Elétrica/métodos , Eletrocorticografia/métodos , Estudos de Viabilidade , Feminino , Humanos , Monitorização Neurofisiológica Intraoperatória/métodos , Monitorização Neurofisiológica Intraoperatória/normas , Idioma , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiologia
16.
BMC Psychiatry ; 20(1): 429, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878626

RESUMO

BACKGROUND: Generalized anxiety disorder (GAD) is closely associated with emotional dysregulation. Patients with GAD tend to overreact to emotional stimuli and are impaired in emotional regulation. Using emotional regulation task, studies have found hypo-activation in prefrontal cortex (PFC) of GAD patients and concluded with inadequate top-down control. However, results remain inconsistent concerning PFC and limbic area's reactivity to emotional stimuli. What's more, only a few studies aim to identify how limbic area interacts with PFC in GAD patients. The current study aims to identify the difference in PFC-limbic circuitry response to emotional stimuli between GAD patients and healthy controls (HCs) from the perspective of brain network. Through brain network analysis, it revealed the connectivity between limbic area and PFC, and moreover, the orientation of connectivity, all of which gave a better test of inadequate top-down control hypothesis. METHODS: During fMRI scanning, participants were required to complete an emotional face identification task (fearful, neutral, happy facial expression). 30 participants (16 GAD patients, 14 HCs) were included in the formal analysis. A Bayesian-network based method was used to identify the brain network consisting of several pre-hypothesized regions of interest (ROIs) under each condition (negative, positive, neutral). In total, six graphs were obtained. Each of them represented the brain network that was common to the group under corresponding condition. RESULTS: Results revealed that GAD patients showed more bottom-up connection but less top-down connection regardless of condition, relative to HCs. Also, the insula was more connected but the amygdala was less connected regardless of condition, relative to HCs. the results also revealed a very different brain network response between GAD patients and HCs even under neutral condition. CONCLUSIONS: More bottom-up connection but less top-down connection may indicate that GAD patients are insufficient in top-down control, in keeping with inadequate top-down control hypothesis. The more connected insula may indicate GAD patients' abnormality in interoception processing. Relative to HCs, distinct brain network response pattern in GAD patients under neutral condition suggests GAD patients' abnormality in distinguishing safety from threat and intolerance of uncertainty.


Assuntos
Transtornos de Ansiedade , Imageamento por Ressonância Magnética , Transtornos de Ansiedade/diagnóstico por imagem , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Emoções , Humanos , Córtex Pré-Frontal/diagnóstico por imagem
17.
Neuroimage ; 184: 632-645, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261307

RESUMO

When an individual engages in a task, the associated evoked activities build upon already ongoing activity, shaped by an underlying functional connectivity baseline (Fox et al., 2009; Smith et al., 2009; Tavor et al., 2016). Building on the idea that rest represents the brain's full functional repertoire, we here incorporate the idea that task-induced functional connectivity modulations ought to be task-specific with respect to their underlying resting state functional connectivity. Various metrics such as clustering coefficient or average path length have been proposed to index processing efficiency, typically from single fMRI session data. We introduce a framework incorporating task potency, which provides direct access to task-specificity by enabling direct comparison between task paradigms. In particular, to study functional connectivity modulations related to cognitive involvement in a task we define task potency as the amplitude of a connectivity modulation away from its baseline functional connectivity architecture as observed during a resting state acquisition. We demonstrate the use of our framework by comparing three tasks (visuo-spatial working memory, reward processing, and stop signal task) available within a large cohort. Using task potency, we demonstrate that cognitive operations are supported by a set of common within-network interactions, supplemented by connections between large-scale networks in order to solve a specific task.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Adolescente , Adulto , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Descanso/fisiologia , Adulto Jovem
18.
Epilepsy Behav ; 99: 106332, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399340

RESUMO

Children with epilepsy can experience significant cognitive dysfunction that can lead to academic underachievement. Traditionally believed to be primarily due to the effects of factors such as the chronicity of epilepsy, medication effects, or the location of the primary epileptogenic lesion;, recent evidence has indicated that disruption of cognition-specific distributed neural networks may play a significant role as well. Specifically, over the last decade, researchers have begun to characterize the mechanisms underlying disrupted cognitive substrates by evaluating neural network abnormalities observed during specific cognitive tasks, using task-based functional magnetic resonance imaging (fMRI). This targeted review assesses the current literature investigating the relationship between neural network abnormalities and cognitive deficits in pediatric epilepsy. The findings indicate that there are indeed neural network abnormalities associated with deficits in executive function, language, processing speed, and memory. Overall, cognitive dysfunction in pediatric epilepsy is associated with a decrease in neural network activation/deactivation as well as increased recruitment of brain regions not typically related to the specific cognitive task under investigation. The research to date has focused primarily on children with focal epilepsy syndromes with small sample sizes and differing research protocols. More extensive research in children with a wider representation of epilepsy syndromes (including generalized epilepsy syndromes) is necessary to fully understand these relationships and begin to identify underlying cognitive phenotypes that may account for the variability observed across children with epilepsy. Furthermore, more uniformity in fMRI protocols and neuropsychological tasks would be ideal to advance this literature.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Encéfalo/fisiopatologia , Criança , Cognição/fisiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Epilepsia/fisiopatologia , Epilepsia/psicologia , Função Executiva/fisiologia , Feminino , Humanos , Masculino , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos
19.
Neuroimage ; 172: 437-449, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408539

RESUMO

Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?).


Assuntos
Cerebelo/fisiologia , Emoções/fisiologia , Idioma , Memória de Curto Prazo/fisiologia , Comportamento Social , Adulto , Estudos de Coortes , Conectoma/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
20.
Neuroimage ; 180(Pt B): 350-369, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29102809

RESUMO

Many recent literature studies have revealed interesting dynamics patterns of functional brain networks derived from fMRI data. However, it has been rarely explored how functional networks spatially overlap (or interact) and how such connectome-scale network interactions temporally evolve. To explore these unanswered questions, this paper presents a novel framework for spatio-temporal modeling of connectome-scale functional brain network interactions via two main effective computational methodologies. First, to integrate, pool and compare brain networks across individuals and their cognitive states under task performances, we designed a novel group-wise dictionary learning scheme to derive connectome-scale consistent brain network templates that can be used to define the common reference space of brain network interactions. Second, the temporal dynamics of spatial network interactions is modeled by a weighted time-evolving graph, and then a data-driven unsupervised learning algorithm based on the dynamic behavioral mixed-membership model (DBMM) is adopted to identify behavioral patterns of brain networks during the temporal evolution process of spatial overlaps/interactions. Experimental results on the Human Connectome Project (HCP) task fMRI data showed that our methods can reveal meaningful, diverse behavior patterns of connectome-scale network interactions. In particular, those networks' behavior patterns are distinct across HCP tasks such as motor, working memory, language and social tasks, and their dynamics well correspond to the temporal changes of specific task designs. In general, our framework offers a new approach to characterizing human brain function by quantitative description for the temporal evolution of spatial overlaps/interactions of connectome-scale brain networks in a standard reference space.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Conectoma/métodos , Modelos Neurológicos , Rede Nervosa/fisiologia , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA