Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Alzheimers Dement ; 20(3): 1656-1670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069673

RESUMO

INTRODUCTION: Neuronal nuclei are normally smoothly surfaced. In Alzheimer's disease (AD) and other tauopathies, though, they often develop invaginations. We investigated mechanisms and functional consequences of neuronal nuclear invagination in tauopathies. METHODS: Nuclear invagination was assayed by immunofluorescence in the brain, and in cultured neurons before and after extracellular tau oligomer (xcTauO) exposure. Nucleocytoplasmic transport was assayed in cultured neurons. Gene expression was investigated using nanoString nCounter technology and quantitative reverse transcription polymerase chain reaction. RESULTS: Invaginated nuclei were twice as abundant in human AD as in cognitively normal adults, and were increased in mouse neurodegeneration models. In cultured neurons, nuclear invagination was induced by xcTauOs by an intracellular tau-dependent mechanism. xcTauOs impaired nucleocytoplasmic transport, increased histone H3 trimethylation at lysine 9, and altered gene expression, especially by increasing tau mRNA. DISCUSSION: xcTauOs may be a primary cause of nuclear invagination in vivo, and by extension, impair nucleocytoplasmic transport and induce pathogenic gene expression changes. HIGHLIGHTS: Extracellular tau oligomers (xcTauOs) cause neuronal nuclei to invaginate. xcTauOs alter nucleocytoplasmic transport, chromatin structure, and gene expression. The most upregulated gene is MAPT, which encodes tau. xcTauOs may thus drive a positive feedback loop for production of toxic tau.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Camundongos , Adulto , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Tauopatias/patologia , Neurônios/metabolismo , RNA Mensageiro/metabolismo
2.
Alzheimers Dement ; 20(4): 2894-2905, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38520322

RESUMO

INTRODUCTION: Tau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers. METHODS: A homogeneous (single-antibody) immunoassay was developed using a novel anti-tau monoclonal antibody and validated with recombinant and brain tissue-derived tau. RESULTS: The assay signals were concentration dependent for recombinant tau aggregates in solution but not monomers, and recognized peptides within, but not outside, the aggregation-prone microtubule binding region. The signals in inferior and middle frontal cortical tissue homogenates increased with neuropathologically determined Braak staging, and were higher in insoluble than soluble homogenized brain fractions. Autopsy-verified AD gave stronger signals than other neurodegenerative diseases. DISCUSSION: The quantitative oligomer/soluble aggregate-specific assay can identify soluble tau aggregates, including oligomers, from monomers in human and in vitro biospecimens. HIGHLIGHTS: The aggregation of tau to form fibrils and neurofibrillary tangles is a key feature of Alzheimer's disease. However, biochemical assays for the quantification of oligomers/soluble aggregated forms of tau are lacking. We developed a new assay that preferentially binds to soluble tau aggregates, including oligomers and fibrils, versus monomers. The assay signal increased corresponding to the total protein content, Braak staging, and insolubility of the sequentially homogenized brain tissue fractions in an autopsy-verified cohort. The assay recognized tau peptides containing the microtubule binding region but not those covering the N- or C-terminal regions only.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Emaranhados Neurofibrilares , Imunoensaio , Peptídeos/metabolismo
3.
Traffic ; 22(5): 153-170, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33527700

RESUMO

Alzheimer's disease (AD) is associated with age-related neurodegeneration, synaptic deformation and chronic inflammation mediated by microglia and infiltrated macrophages in the brain. Tau oligomers can be released from damaged neurons via various mechanisms such as exosomes, neurotransmitter, membrane leakage etc. Microglia sense the extracellular Tau through several cell-surface receptors and mediate chemotaxis and phagocytosis. The purinergic receptor P2Y12R recently gained interest in neurodegeneration for neuro-glial communication and microglial chemotaxis towards the site of plaque deposition. To understand the effect of extracellular Tau oligomers in microglial migration, the P2Y12R-mediated actin remodeling, reorientation of tubulin network and rate of migration were studied in the presence of ATP. The extracellular Tau species directly interacted with P2Y12R and also induced this purinoceptor expression in microglia. Microglial P2Y12R colocalized with remodeled membrane-associated actin network as a component of migration in response to Tau oligomers. As an inducer of P2Y12R, ATP facilitated the localization of P2Y12R in lamellipodia and filopodia during accelerated microglial migration. The direct interaction of extracellular Tau oligomers with microglial P2Y12R would facilitate the signal transduction in both way, directional chemotaxis and receptor-mediated phagocytosis. These unprecedented findings emphasize that microglia can modulate the membrane-associated actin structure and incorporate P2Y12R to perceive the axis and rate of chemotaxis in Tauopathy.


Assuntos
Actinas , Microglia , Quimiotaxia , Proteínas de Ligação ao GTP , Humanos , Microglia/metabolismo , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2Y12
4.
Alzheimers Dement ; 19(7): 2874-2887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36633254

RESUMO

INTRODUCTION: Tau phosphorylation at T217 is a promising Alzheimer's disease (AD) biomarker, but its functional consequences were unknown. METHODS: Human brain and cultured mouse neurons were analyzed by immunoblotting and immunofluorescence for total tau, taupT217 , taupT181 , taupT231 , and taupS396/pS404 . Direct stochastic optical reconstruction microscopy (dSTORM) super resolution microscopy was used to localize taupT217 in cultured neurons. Enhanced green fluorescent protein (EGFP)-tau was expressed in fibroblasts as wild type and T217E pseudo-phosphorylated tau, and fluorescence recovery after photobleaching (FRAP) reported tau turnover rates on microtubules. RESULTS: In the brain, taupT217 appears in neurons at Braak stages I and II, becomes more prevalent later, and co-localizes partially with other phospho-tau epitopes. In cultured neurons, taupT217 is increased by extracellular tau oligomers (xcTauOs) and is associated with developing post-synaptic sites. FRAP recovery was fastest for EGFP-tauT217E . CONCLUSION: TaupT217 increases in the brain as AD progresses and is induced by xcTauOs. Post-synaptic taupT217 suggests a role for T217 phosphorylation in synapse impairment. T217 phosphorylation reduces tau's affinity for microtubules. HIGHLIGHTS: Validation of anti-tau phosphorylated at threonine-217 (taupT217 ) specificity is essential due to epitope redundancy. taupT217 increases as Alzheimer's disease progresses and is found throughout diseased neurons. taupT217 is associated with developing post-synaptic sites in cultured neurons. Extracellular oligomers of tau, but not amyloid beta, increase intracellular taupT217 . T217E pseudo-phosphorylation reduces tau's affinity for microtubules.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Treonina/metabolismo , Neurônios/metabolismo , Fosforilação
5.
Neuropathol Appl Neurobiol ; 48(5): e12811, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35274343

RESUMO

AIMS: Several studies reported that astrocytes support neuronal communication by the release of gliotransmitters, including ATP and glutamate. Astrocytes also play a fundamental role in buffering extracellular glutamate in the synaptic cleft, thus limiting the risk of excitotoxicity in neurons. We previously demonstrated that extracellular tau oligomers (ex-oTau), by specifically targeting astrocytes, affect glutamate-dependent synaptic transmission via a reduction in gliotransmitter release. The aim of this work was to determine if ex-oTau also impair the ability of astrocytes to uptake extracellular glutamate, thus further contributing to ex-oTau-dependent neuronal dysfunction. METHODS: Primary cultures of astrocytes and organotypic brain slices were exposed to ex-oTau (200 nM) for 1 h. Extracellular glutamate buffering by astrocytes was studied by: Na+ imaging; electrophysiological recordings; high-performance liquid chromatography; Western blot and immunofluorescence. Experimental paradigms avoiding ex-oTau internalisation (i.e. heparin pre-treatment and amyloid precursor protein knockout astrocytes) were used to dissect intracellular vs extracellular effects of oTau. RESULTS: Ex-oTau uploading in astrocytes significantly affected glutamate-transporter-1 expression and function, thus impinging on glutamate buffering activity. Ex-oTau also reduced Na-K-ATPase activity because of pump mislocalisation on the plasma membrane, with no significant changes in expression. This effect was independent of oTau internalisation and it caused Na+ overload and membrane depolarisation in ex-oTau-targeted astrocytes. CONCLUSIONS: Ex-oTau exerted a complex action on astrocytes, at both intracellular and extracellular levels. The net effect was dysregulated glutamate signalling in terms of both release and uptake that relied on reduced expression of glutamate-transporter-1, altered function and localisation of NKA1A1, and NKA1A2. Consequently, Na+ gradients and all Na+ -dependent transports were affected.


Assuntos
Astrócitos , Ácido Glutâmico , Astrócitos/metabolismo , Células Cultivadas , Regulação para Baixo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia
6.
J Biol Chem ; 295(44): 14807-14825, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32737202

RESUMO

The pathological aggregation of tau plays an important role in Alzheimer's disease and many other related neurodegenerative diseases, collectively referred to as tauopathies. Recent evidence has demonstrated that tau oligomers, small and soluble prefibrillar aggregates, are highly toxic due to their strong ability to seed tau misfolding and propagate the pathology seen across different neurodegenerative diseases. We previously showed that novel curcumin derivatives affect preformed tau oligomer aggregation pathways by promoting the formation of more aggregated and nontoxic tau aggregates. To further investigate their therapeutic potential, we have extended our studies o disease-relevant brain-derived tau oligomers (BDTOs). Herein, using well-characterized BDTOs, isolated from brain tissues of different tauopathies, including Alzheimer's disease, progressive supranuclear palsy, and dementia with Lewy bodies, we found that curcumin derivatives modulate the aggregation state of BDTOs by reshaping them and rescue neurons from BDTO-associated toxicity. Interestingly, compound CL3 showed an effect on the aggregation pattern of BDTOs from different tauopathies, resulting in the formation of less neurotoxic larger tau aggregates with decreased hydrophobicity and seeding propensity. Our results lay the groundwork for potential investigations of the efficacy and beneficial effects of CL3 and other promising compounds for the treatment of tauopathies. Furthermore, CL3 may aid in the development of tau imaging agent for the detection of tau oligomeric strains and differential diagnosis of the tauopathies, thus enabling earlier interventions.


Assuntos
Biopolímeros/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo , Biopolímeros/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Curcumina/análogos & derivados , Curcumina/farmacologia , Diagnóstico Diferencial , Humanos , Neurônios/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Tauopatias/diagnóstico , Proteínas tau/efeitos dos fármacos
7.
Cell Commun Signal ; 19(1): 16, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579328

RESUMO

BACKGROUND: Amyloid aggregate deposition is the key feature of Alzheimer's disease. The proteinaceous aggregates found in the afflicted brain are the intra-neuronal neurofibrillary tangles formed by the microtubule-associated protein Tau and extracellular deposits, senile plaques, of amyloid beta (Aß) peptide proteolytically derived from the amyloid precursor protein. Accumulation of these aggregates has manifestations in the later stages of the disease, such as memory loss and cognitive inabilities originating from the neuronal dysfunction, neurodegeneration, and brain atrophy. Treatment of this disease at the late stages is difficult, and many clinical trials have failed. Hence, the goal is to find means capable of preventing the aggregation of these intrinsically disordered proteins by inhibiting the early stages of their pathological transformations. Polyphenols are known to be neuroprotective agents with the noticeable potential against many neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Prion diseases. METHODS: We analyzed the capability of Baicalein to inhibit aggregation of human Tau protein by a multifactorial analysis that included several biophysical and biochemical techniques. RESULTS: The potency of Baicalein, a polyphenol from the Scutellaria baicalensis Georgi, against in vitro Tau aggregation and PHF dissolution has been screened and validated. ThS fluorescence assay revealed the potent inhibitory activity of Baicalein, whereas ANS revealed its mechanism of Tau inhibition viz. by oligomer capture and dissociation. In addition, Baicalein dissolved the preformed mature fibrils of Tau thereby possessing a dual target action. Tau oligomers formed by Baicalein were non-toxic to neuronal cells, highlighting its role as a potent molecule to be screened against AD. CONCLUSION: In conclusion, Baicalein inhibits aggregation of hTau40 by enhancing the formation of SDS-stable oligomers and preventing fibril formation. Baicalein-induced oligomers do not affect the viability of the neuroblastoma cells. Therefore, Baicalein can be considered as a lead molecule against Tau pathology in AD. Video Abstract.


Assuntos
Flavanonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Proteínas tau/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/genética , Heparina , Camundongos , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Proteínas tau/química , Proteínas tau/genética
8.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34576308

RESUMO

Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction.


Assuntos
Núcleo Celular/metabolismo , Sinapses/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Humanos , Sinapses/fisiologia , Proteínas tau/química
9.
J Neuroinflammation ; 17(1): 10, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915009

RESUMO

BACKGROUND: Alzheimer's disease is associated with the accumulation of intracellular Tau tangles within neurons and extracellular amyloid-ß plaques in the brain parenchyma, which altogether results in synaptic loss and neurodegeneration. Extracellular concentrations of oligomers and aggregated proteins initiate microglial activation and convert their state of synaptic surveillance into a destructive inflammatory state. Although Tau oligomers have fleeting nature, they were shown to mediate neurotoxicity and microglial pro-inflammation. Due to the instability of oligomers, in vitro experiments become challenging, and hence, the stability of the full-length Tau oligomers is a major concern. METHODS: In this study, we have prepared and stabilized hTau40WT oligomers, which were purified by size-exclusion chromatography. The formation of the oligomers was confirmed by western blot, thioflavin-S, 8-anilinonaphthaalene-1-sulfonic acid fluorescence, and circular dichroism spectroscopy, which determine the intermolecular cross-ß sheet structure and hydrophobicity. The efficiency of N9 microglial cells to phagocytose hTau40WT oligomer and subsequent microglial activation was studied by immunofluorescence microscopy with apotome. The one-way ANOVA was performed for the statistical analysis of fluorometric assay and microscopic analysis. RESULTS: Full-length Tau oligomers were detected in heterogeneous globular structures ranging from 5 to 50 nm as observed by high-resolution transmission electron microscopy, which was further characterized by oligomer-specific A11 antibody. Immunocytochemistry studies for oligomer treatment were evidenced with A11+ Iba1high microglia, suggesting that the phagocytosis of extracellular Tau oligomers leads to microglial activation. Also, the microglia were observed with remodeled filopodia-like actin structures upon the exposure of oligomers and aggregated Tau. CONCLUSION: The peri-membrane polymerization of actin filament and co-localization of Iba1 relate to the microglial movements for phagocytosis. Here, these findings suggest that microglia modified actin cytoskeleton for phagocytosis and rapid clearance of Tau oligomers in Alzheimer's disease condition.


Assuntos
Actinas/metabolismo , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Fagocitose/fisiologia , Animais , Linhagem Celular , Cromatografia em Gel/métodos , Humanos , Proteínas de Membrana/análise , Camundongos
10.
Proc Natl Acad Sci U S A ; 114(36): 9707-9712, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827321

RESUMO

The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer's disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood-brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Agregados Proteicos , Agregação Patológica de Proteínas/etiologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Tauopatias/etiologia , Tauopatias/metabolismo , Tauopatias/prevenção & controle , Proteínas tau/química , Proteínas tau/metabolismo
11.
Molecules ; 25(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260279

RESUMO

The structural polymorphism and the physiological and pathophysiological roles of two important proteins, ß-amyloid (Aß) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aß has important physiological functions. Toxic oligomeric Aß assemblies (AßOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aß (fAß) form has a very ordered cross-ß structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AßOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AßO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AßOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Proteínas tau/química , Peptídeos beta-Amiloides/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas tau/metabolismo
12.
Acta Neuropathol ; 137(2): 259-277, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30465259

RESUMO

RNA binding proteins (RBPs) are strongly linked to the pathophysiology of motor neuron diseases. Recent studies show that RBPs, such as TIA1, also contribute to the pathophysiology of tauopathy. RBPs co-localize with tau pathology, and reduction of TIA1 protects against tau-mediated neurodegeneration. The mechanism through which TIA1 reduction protects against tauopathy, and whether TIA1 modulates the propagation of tau, are unknown. Previous studies indicate that the protective effect of TIA1 depletion correlates with both the reduction of oligomeric tau and the reduction of pathological TIA1 positive tau inclusions. In the current report, we used a novel tau propagation approach to test whether TIA1 is required for producing toxic tau oligomers and whether TIA1 reduction would provide protection against the spread of these oligomers. The approach used young PS19 P301S tau mice at an age at which neurodegeneration would normally not yet occur and seeding oligomeric or fibrillar tau by injection into hippocampal CA1 region. We find that propagation of exogenous tau oligomers (but not fibrils) across the brain drives neurodegeneration in this model. We demonstrate that TIA1 reduction essentially brackets the pathophysiology of tau, being required for the production of tau oligomers, as well as regulating the response of neurons to propagated toxic tau oligomers. These results indicate that RNA binding proteins modulate the pathophysiology of tau at multiple levels and provide insights into possible therapeutic approaches to reduce the spread of neurodegeneration in tauopathy.


Assuntos
Encéfalo/patologia , Antígeno-1 Intracelular de Células T/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Tauopatias/patologia
13.
Alzheimers Dement ; 15(11): 1489-1502, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31653529

RESUMO

OBJECTIVE: Understanding the heterogeneous pathology in Alzheimer's disease and related tauopathies is one of the most urgent and fundamental challenges facing the discovery of novel disease-modifying therapies. Through monitoring ensembles of toxic and nontoxic tau oligomers spontaneously formed in cells, our biosensor technology can identify tool compounds that modulate tau oligomer structure and toxicity, providing much needed insight into the nature and properties of toxic tau oligomers. BACKGROUND: Tauopathies are a group of neurodegenerative disorders characterized by pathologic aggregation of the microtubule binding protein tau. Recent studies suggest that tau oligomers are the primary toxic species in tauopathies. NEW/UPDATED HYPOTHESIS: We hypothesize that tau biosensors capable of monitoring tau oligomer conformation are able to identify tool compounds that modulate the structure and conformation of these tau assemblies, providing key insight into the unique structural fingerprints of toxic tau oligomers. These fingerprints will provide gravely needed biomarker profiles to improve staging of early tauopathy pathology and generate lead compounds for potential new therapeutics. Our time-resolved fluorescence resonance energy transfer biosensors provide us an exquisitely sensitive technique to monitor minute structural changes in monomer and oligomer conformation. In this proof-of-concept study, we identified a novel tool compound, MK-886, which directly binds tau, perturbs the conformation of toxic tau oligomers, and rescues tau-induced cytotoxicity. Furthermore, we show that MK-886 alters the conformation of tau monomer at the proline-rich and microtubule binding regions, stabilizing an on-pathway oligomer. MAJOR CHALLENGES FOR THE HYPOTHESIS: Our approach monitors changes in the ensemble of assemblies that are spontaneously formed in cells but does not specifically isolate or enrich unique toxic tau species. However, time-resolved fluorescence resonance energy transfer does not provide high-resolution, atomic scale information, requiring additional experimental techniques to resolve the structural features stabilized by different tool compounds. LINKAGE TO OTHER MAJOR THEORIES: Our biosensor technology is broadly applicable to other areas of tauopathy therapeutic development. These biosensors can be readily modified for different isoforms of tau, specific post-translational modifications, and familial Alzheimer's disease-associated mutations. We are eager to explore tau interactions with chaperone proteins, monitor cross-reactivity with other intrinsically disordered proteins, and target seeded oligomer pathology.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Transferência Ressonante de Energia de Fluorescência , Tauopatias , Proteínas tau/metabolismo , Encéfalo/patologia , Humanos , Indóis
14.
Int J Mol Sci ; 20(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547024

RESUMO

Although the causative role of the accumulation of amyloid ß 1-42 (Aß42) deposits in the pathogenesis of Alzheimer's disease (AD) has been under debate for many years, it is supposed that the toxicity soluble oligomers of Tau protein (TauOs) might be also the pathogenic factor acting on the initial stages of this disease. Therefore, we performed a thorough search for literature pertaining to our investigation via the MEDLINE/PubMed database. It was shown that soluble TauOs, especially granular forms, may be the most toxic form of this protein. Hyperphosphorylated TauOs can reduce the number of synapses by missorting into axonal compartments of neurons other than axon. Furthermore, soluble TauOs may be also responsible for seeding Tau pathology within AD brains, with probable link to AßOs toxicity. Additionally, the concentrations of TauOs in the cerebrospinal fluid (CSF) and plasma of AD patients were higher than in non-demented controls, and revealed a negative correlation with mini-mental state examination (MMSE) scores. It was postulated that adding the measurements of TauOs to the panel of CSF biomarkers could improve the diagnosis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Agregação Patológica de Proteínas/metabolismo , Dobramento de Proteína , Deficiências na Proteostase/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Animais , Humanos , Agregação Patológica de Proteínas/diagnóstico , Agregação Patológica de Proteínas/patologia , Deficiências na Proteostase/diagnóstico , Deficiências na Proteostase/patologia
15.
Dev Neurosci ; 40(2): 175-188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29788004

RESUMO

The leading cause of death in the juvenile population is trauma, and in particular neurotrauma. The juvenile brain response to neurotrauma is not completely understood. Endoplasmic reticulum (ER) stress has been shown to contribute to injury expansion and behavioral deficits in adult rodents and furthermore has been seen in adult postmortem human brains diagnosed with chronic traumatic encephalopathy. Whether endoplasmic reticulum stress is increased in juveniles with traumatic brain injury (TBI) is poorly delineated. We investigated this important topic using a juvenile rat controlled cortical impact (CCI) model. We proposed that ER stress would be significantly increased in juvenile rats following TBI and that this would correlate with behavioral deficits using a juvenile rat model. A juvenile rat (postnatal day 28) CCI model was used. Binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP) were measured at 4 h in the ipsilateral pericontusion cortex. Hypoxia-inducible factor (HIF)-1α was measured at 48 h and tau kinase measured at 1 week and 30 days. At 4 h following injury, BiP and CHOP (markers of ER stress) were significantly elevated in rats exposed to TBI. We also found that HIF-1α was significantly upregulated 48 h following TBI showing delayed hypoxia. The early ER stress activation was additionally asso-ciated with the activation of a known tau kinase, glycogen synthase kinase-3ß (GSK-3ß), by 1 week. Tau oligomers measured by R23 were significantly increased by 30 days following TBI. The biochemical changes following TBI were associated with increased impulsive-like or anti-anxiety behavior measured with the elevated plus maze, deficits in short-term memory measured with novel object recognition, and deficits in spatial memory measured with the Morris water maze in juvenile rats exposed to TBI. These results show that ER stress was increased early in juvenile rats exposed to TBI, that these rats developed tau oligomers over the course of 30 days, and that they had significant short-term and spatial memory deficits following injury.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Transtornos Cognitivos/etiologia , Estresse do Retículo Endoplasmático/fisiologia , Envelhecimento , Animais , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley , Tauopatias/etiologia , Tauopatias/patologia , Proteínas tau/metabolismo
16.
J Neurosci ; 35(12): 4857-68, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810517

RESUMO

In Alzheimer's disease (AD), the pathological accumulation of tau appears to be a downstream effect of amyloid ß protein (Aß). However, the relationship between these two proteins and memory loss is unclear. In this study, we evaluated the specific removal of pathological tau oligomers in aged Tg2576 mice by passive immunotherapy using tau oligomer-specific monoclonal antibody. Removal of tau oligomers reversed memory deficits and accelerated plaque deposition in the brain. Surprisingly, Aß*56 levels decreased, suggesting a link between tau and Aß oligomers in the promotion of cognitive decline. The results suggest that tau oligomerization is not only a consequence of Aß pathology but also a critical mediator of the toxic effects observed afterward in AD. Overall, these findings support the potential of tau oligomers as a therapeutic target for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais/uso terapêutico , Proteínas tau/metabolismo , Envelhecimento/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/imunologia , Placa Amiloide/metabolismo , Proteínas tau/imunologia
17.
Neurobiol Dis ; 87: 19-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704708

RESUMO

In neurodegenerative diseases like AD, tau forms neurofibrillary tangles, composed of tau protein. In the AD brain, activated caspases cleave tau at the 421th Asp, generating a caspase-cleaved form of tau, TauC3. Although TauC3 is known to assemble rapidly into filaments in vitro, a role of TauC3 in vivo remains unclear. Here, we generated a transgenic mouse expressing human TauC3 using a neuron-specific promoter. In this mouse, we found that human TauC3 was expressed in the hippocampus and cortex. Interestingly, TauC3 mice showed drastic learning and spatial memory deficits and reduced synaptic density at a young age (2-3months). Notably, tau oligomers as well as tau aggregates were found in TauC3 mice showing memory deficits. Further, i.p. or i.c.v. injection with methylene blue or Congo red, inhibitors of tau aggregation in vitro, and i.p. injection with rapamycin significantly reduced the amounts of tau oligomers in the hippocampus, rescued spine density, and attenuated memory impairment in TauC3 mice. Together, these results suggest that TauC3 facilitates early memory impairment in transgenic mice accompanied with tau oligomer formation, providing insight into the role of TauC3 in the AD pathogenesis associated with tau oligomers and a useful AD model to test drug candidates.


Assuntos
Caspases/metabolismo , Transtornos da Memória/metabolismo , Proteínas tau/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nootrópicos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Sirolimo/farmacologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Proteínas tau/genética
18.
J Neurosci ; 34(12): 4260-72, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24647946

RESUMO

Recent findings suggest that tau oligomers, which form before neurofibrillary tangles (NFTs), are the true neurotoxic tau entities in neurodegenerative tauopathies, including Alzheimer's disease (AD). Studies in animal models of tauopathy suggest that tau oligomers play a key role in eliciting behavioral and cognitive impairments. Here, we used a novel tau oligomer-specific monoclonal antibody (TOMA) for passive immunization in mice expressing mutant human tau. A single dose of TOMA administered either intravenously or intracerebroventricularly was sufficient to reverse both locomotor and memory deficits in a mouse model of tauopathy for 60 d, coincident with rapid reduction of tau oligomers but not phosphorylated NFTs or monomeric tau. Our data demonstrate that antibody protection is mediated by extracellular and rapid peripheral clearance. These findings provide the first direct evidence in support of a critical role for tau oligomers in disease progression and validate tau oligomers as a target for the treatment of AD and other neurodegenerative tauopathies.


Assuntos
Doença de Alzheimer/terapia , Imunização Passiva , Emaranhados Neurofibrilares/imunologia , Tauopatias/terapia , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Tauopatias/genética , Tauopatias/imunologia , Tauopatias/metabolismo , Proteínas tau/genética
19.
Neurobiol Dis ; 82: 540-551, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26385829

RESUMO

The accumulation of DNA and RNA oxidative damage is observed in cortical and hippocampal neurons from Alzheimer's disease (AD) brains at early stages of pathology. We recently reported that Tau is a key nuclear player in the protection of neuronal nucleic acid integrity in vivo under physiological conditions and hyperthermia, a strong inducer of oxidative stress. In a mouse model of tauopathy (THY-Tau22), we demonstrate that hyperthermia selectively induces nucleic acid oxidative damage and nucleic acid strand breaks in the nucleus and cytoplasm of hippocampal neurons that display early Tau phosphorylation but no Tau fibrils. Nucleic acid-damaged neurons were exclusively immunoreactive for prefibrillar Tau oligomers. A similar association between prefibrillar Tau oligomers and nucleic acid oxidative damage was observed in AD brains. Pretreatment with Methylene Blue (MB), a Tau aggregation inhibitor and a redox cycler, reduced hyperthermia-induced Tau oligomerization as well as nucleic acid damage. This study clearly highlights the existence of an early and critical time frame for hyperthermia-induced Tau oligomerization, which most likely occurs through increased oxidative stress, and nucleic acid vulnerability during the progression of Tau pathology. These results suggest that at early stages of AD, Tau oligomerization triggers the loss of the nucleic acid protective function of monomeric Tau. This study highlights the existence of a short therapeutic window in which to prevent the formation of pathological forms of Tau and their harmful consequences on nucleic acid integrity during the progression of Tau pathology.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/patologia , Quebras de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Febre/tratamento farmacológico , Febre/metabolismo , Febre/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Azul de Metileno/farmacologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , RNA/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/patologia
20.
J Biol Chem ; 288(23): 17042-17050, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23632019

RESUMO

Traumatic brain injury (TBI) is a serious problem that affects millions of people in the United States alone. Multiple concussions or even a single moderate to severe TBI can also predispose individuals to develop a pathologically distinct form of tauopathy-related dementia at an early age. No effective treatments are currently available for TBI or TBI-related dementia; moreover, only recently has insight been gained regarding the mechanisms behind their connection. Here, we used antibodies to detect oligomeric and phosphorylated Tau proteins in a non-transgenic rodent model of parasagittal fluid percussion injury. Oligomeric and phosphorylated Tau proteins were detected 4 and 24 h and 2 weeks post-TBI in injured, but not sham control rats. These findings suggest that diagnostic tools and therapeutics that target only toxic forms of Tau may provide earlier detection and safe, more effective treatments for tauopathies associated with repetitive neurotrauma.


Assuntos
Lesões Encefálicas/metabolismo , Multimerização Proteica , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Pressão do Líquido Cefalorraquidiano , Modelos Animais de Doenças , Humanos , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Tauopatias/etiologia , Tauopatias/patologia , Tauopatias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA