RESUMO
Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles makes these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-and-hold and triangular stretches were analysed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as serial history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak and mean firing rates were not reduced and IFR was best-correlated with fascicle velocity. During ramp stretches, SEEs reduced the initial burst, dynamic and static responses of the spindle. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the serial history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length or velocity, or MTU force.
Assuntos
Fusos Musculares , Músculo Esquelético , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Movimento , PosturaRESUMO
We investigated whether 10 weeks of pre-season soccer training (including high-intensity resistance exercise) with hydrolysed collagen (COL) supplementation would confer greater changes in patellar tendon (PT) mechanical and material properties compared with placebo (PLA) in professional female soccer athletes. Eleven athletes from the first team squad of a Football Association Women's Championship soccer club volunteered to participate in this study (age, 25.7 ± 4.2 years; height, 1.68 ± 0.04 m; mass, 64.0 ± 4.6 kg). Participants were pair-matched for baseline knee extensor maximum isometric voluntary contraction torque, age, height and mass and were randomly assigned to the COL group (n = 6) or PLA group (n = 5). Participants were given 30 g COL or energy-matched (36.5 g maltodextrin and 8.4 g fructose) PLA, plus 500 mg vitamin C before each training session, which consisted of high-intensity lower-limb resistance exercise, plyometric or pitch-based exercise 3 days/week for 10 weeks during the pre-season period. We assessed knee extensor maximum isometric voluntary contraction torque and PT properties using isokinetic dynamometry and ultrasonography before and after the intervention. The PT stiffness [COL, +15.4% ± 3.1% (d = 0.81) vs. PLA, +4.6% ± 3.0% (d = 0.32), P = 0.002] and Young's modulus [COL, +14.2% ± 4.0% (d = 0.65) vs. PLA, +3.4% ± 2.8% (d = 0.15), P = 0.004] increased more in COL than in PLA. There was a main effect of training on PT cross-sectional area (P = 0.027), but no interaction effect (P = 0.934). To conclude, 10 weeks of pre-season soccer training (incorporating high-intensity resistance exercise) with 30 g COL increased PT stiffness and Young's modulus more than training alone in professional female soccer athletes. This has positive implications for improving athletic performance and mitigating injury risk.
RESUMO
PURPOSE: This study aims to evaluate the reliability and validity of using MyotonPRO to quantify the mechanical properties of the muscle-tendon unit through in vivo measurements and preliminary in situ measurements using formalin-fixed tissues. MATERIALS AND METHODS: The mechanical properties of gastrocnemii and the Achilles tendon of 12 healthy adults (six males and six females, 34.9 ± 5.8 years) were examined for in vivo test twice within a day and once post-24 hours using MyotonPRO, while nine human cadavers (formalin-fixed, 3 males and 6 females, 89.9 ± 5.1 years) were assessed for preliminary in situ test with identical time schedule to evaluate the within-day and inter-day reliability and validity. RESULTS: In vivo tests had very high within-day (ICC: 0.96-0.99) and inter-day reliability (ICC: 0.83-0.96), while in situ tests (formalin-fixed tissues) showed high within-day (ICC: 0.87-0.99) and inter-day reliability (ICC: 0.76-0.98) for the results of tone and stiffness. There was no significant difference in the stiffness of the free part of the Achilles tendon between in vivo and in situ conditions. The stiffness of the lateral gastrocnemius (r = 0.55, p = 0.018), proximal part of the Achilles tendon (r = 0.56, p = 0.015), and free part of the Achilles tendon (r = 0.47, p = 0.048) before removing the skin was significantly correlated with that after removing the skin condition. CONCLUSIONS: The findings of the current study suggest that MyotonPRO is reliable and valid for evaluating tendon stiffness both in vivo and in situ (formalin-fixed tissues).
Assuntos
Tendão do Calcâneo , Masculino , Adulto , Feminino , Humanos , Reprodutibilidade dos Testes , Músculo EsqueléticoRESUMO
Tendon properties impact human locomotion, influencing sports performance, and injury prevention. Hamstrings play a crucial role in sprinting, particularly the biceps femoris long head (BFlh), which is prone to frequent injuries. It remains uncertain if BFlh exhibits distinct mechanical properties compared to other hamstring muscles. This study utilized free-hand three-dimensional ultrasound to assess morphological and mechanical properties of distal hamstrings tendons in 15 men. Scans were taken in prone position, with hip and knee extended, at rest and during 20%, 40%, 60%, and 80% of maximal voluntary isometric contraction of the knee flexors. Tendon length, volume, cross-sectional area (CSA), and anteroposterior (AP) and mediolateral (ML) widths were quantified at three locations. Longitudinal and transverse deformations, stiffness, strain, and stress were estimated. The ST had the greatest tendon strain and the lowest stiffness as well as the highest CSA and AP and ML width strain compared to other tendons. Biceps femoris short head (BFsh) exhibited the least strain, AP and ML deformation. Further, BFlh displayed the highest stiffness and stress, and BFsh had the lowest stress. Additionally, deformation varied by region, with the proximal site showing generally the lowest CSA strain. Distal tendon mechanical properties differed among the hamstring muscles during isometric knee flexions. In contrast to other bi-articular hamstrings, the BFlh high stiffness and stress may result in greater energy absorption by its muscle fascicles, rather than the distal tendon, during late swing in sprinting. This could partly account for the increased incidence of hamstring injuries in this muscle.
Assuntos
Músculos Isquiossurais , Músculo Esquelético , Masculino , Humanos , Músculo Esquelético/fisiologia , Tendões/diagnóstico por imagem , Tendões/fisiologia , Músculos Isquiossurais/fisiologia , Joelho/diagnóstico por imagem , Joelho/fisiologia , Contração Isométrica/fisiologia , UltrassonografiaRESUMO
AIM: we investigated the effects of a 10 week training program (i.e., minute oscillatory stretching; MOS) on the mechanical responses and walking capability in people with type 2 diabetes (T2D). METHODS: seventeen T2D patients performed maximum voluntary contractions of the plantar flexor muscles during which Achilles tendon stiffness (kT) and muscle-tendon stiffness (kM) were evaluated at different percentages of the maximum voluntary force (MVC). In addition, each participant was requested to walk at different walking speeds (i.e. 2, 3, 4, 5, and 6 kmh-1) while their net energy cost of walking (Cnet), cumulative EMG activity per distance travelled (CMAPD) and kinematic parameters (step length, step frequency, the ankle/knee range of motion) were evaluated. RESULTS: maximum tendon elongation increased after MOS training, and kT significantly decreased (between 0 and 20% of MVC). No differences were observed for muscle elongation or kM after training. Cnet decreased after training (at the slowest tested speeds) while no changes in CMAPD were observed. Step length and ankle ROM during walking increased after training at the slowest tested speeds, while step frequency decreased; no significant effects were observed for knee ROM. CONCLUSION: these results indicate the effectiveness of 10 weeks of MOS training in reducing tendon stiffness and the energy cost during walking in people with T2D. This training protocol requires no specific instrumentation, can be easily performed at home, and has a high adherence (92 ± 9%). It could, thus, be useful to mitigate mechanical tendon deterioration and improve physical behaviour in this population.
RESUMO
PURPOSE: Muscle, tendon, and muscle-tendon unit (MTU) stiffness as well as passive peak torque (PPT) or delayed stretching pain sensation are typical explanatory approaches for stretching adaptations. However, in literature, differences in the study inclusion, as well as applying meta-analytical models without accounting for intrastudy dependency of multiple and heteroscedasticity of data bias the current evidence. Furthermore, most of the recent analyses neglected to investigate PPT adaptations and further moderators. METHODS: The presented review used the recommended meta-analytical calculation method to investigate the effects of stretching on stiffness as well as on passive torque parameters using subgroup analyses for stretching types, stretching duration, and supervision. RESULTS: Chronic stretching reduced muscle stiffness ( - 0.38, p = 0.01) overall, and also for the supervised ( - 0.49, p = 0.004) and long static stretching interventions ( - 0.61, p < 0.001), while the unsupervised and short duration subgroups did not reach the level of significance (p = 0.21, 0.29). No effects were observed for tendon stiffness or for subgroups (e.g., long-stretching durations). Chronic PPT (0.55, p = 0.005) in end ROM increased. Only long-stretching durations sufficiently decreased muscle stiffness acutely. No effects could be observed for acute PPT. CONCLUSION: While partially in accordance with previous literature, the results underline the relevance of long-stretching durations when inducing changes in passive properties. Only four acute PPT in end ROM studies were eligible, while a large number were excluded as they provided mathematical models and/or lacked control conditions, calling for further randomized controlled trials on acute PPT effects.
Assuntos
Exercícios de Alongamento Muscular , Músculo Esquelético , Torque , Humanos , Exercícios de Alongamento Muscular/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Revisões Sistemáticas como Assunto , Amplitude de Movimento Articular/fisiologiaRESUMO
PURPOSE: The goal of this paper was to determine if sports participation influences torque control differently for adolescent boys and young men during a slow ramp task. METHODS: Twenty-one adolescent boys (11 athletes) and 31 young men (16 athletes) performed a slow ramp increase in plantar flexion torque from 0 to maximum. We quantified torque control as the coefficient of variation (CV) of torque during the ramp and quantified the Achilles tendon mechanical properties using ultrasonography. RESULTS: Relative to adolescent boys, young men were taller, heavier, stronger, and had a longer and stiffer Achilles tendon. However, these characteristics were not different between athletes and non-athletes in adolescent boys. For the CV of torque, there was a significant interaction with sports participation, indicating that only adolescent boys who were non-athletes had greater variability than young men. The CV of torque of all participants was predicted from the maximum torque and torque oscillations from 1 to 2 Hz, whereas the CV of torque for adolescent boys was predicted only from torque oscillations from 1 to 2 Hz. CONCLUSION: These findings suggested that adolescent boys who participate in sports exhibited lower torque variability during a slow ramp task, which was not explained by differences in Achilles tendon properties or strength.
Assuntos
Tendão do Calcâneo , Esportes , Torque , Humanos , Masculino , Adolescente , Adulto Jovem , Atletas , Esportes/fisiologia , Tendão do Calcâneo/fisiologiaRESUMO
PURPOSE: The aim of the present study was to investigate whether the electrically evoked muscle responses are differently affected over time by the knee joint angle after an exercise-induced muscle damage (EIMD). We hypothesized that low-frequency-evoked responses would be less affected at long than short muscle length, and that mechanisms located within the muscle and tendinous tissues would be involved. METHODS: Fifteen males performed 45 min loaded downhill walking (DW) exercise. Maximal voluntary contraction torque (MVC), optimal angle for torque production, voluntary activation level (VAL), twitch, doublet at 10 and 100 Hz (Db10 and Db100, respectively), rate of torque development (RTD), post-activation potentiation (PAP), muscle shear elastic modulus (µ) and aponeurosis stiffness were assessed before, after, and 4, 24, 48, 72 and 168 h after the exercise at a knee angle of 40°, 90° and 120° (0°: full extension). RESULTS: MVC, VAL and Db100 were similarly decreased across joint angles after the DW and optimal angle was not affected. Twitch, Db10, Db10/Db100, PAP and RTD were less affected and muscle µ more increased at long than short muscle lengths (p < 0.05), especially during the first 24 h after the DW exercise. CONCLUSION: Low-frequency-evoked responses were more preserved at long than short muscle length the first 24 h after the DW exercise, suggesting that joint angle should be taken into account to assess muscular alterations after EIMD. This length-dependence could be associated to the higher sensitivity to Ca2+ and the higher increase in muscle stiffness at long than short muscle length.
Assuntos
Contração Muscular , Músculo Esquelético , Masculino , Humanos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Exercício Físico/fisiologia , Tendões , Articulação do Joelho , Torque , Contração Isométrica/fisiologiaRESUMO
The present study aimed to investigate the effects of tendon elastic energy and electromyographic activity patterns (ratio of pre-landing to concentric: mEMG PLA/CON; ratio of eccentric to concentric; mEMG ECC/CON) on jump performance. Twenty-nine males performed five kinds of unilateral jumps using only ankle joint (no-countermovement jump: noCMJ; countermovement jump: CMJ; drop jumps at 10, 20 and 30 cm drop height: DJ10, DJ20 and DJ30). Jumping height, pre-stretch augmentation and electromyographic activity of the plantar flexor muscles were measured. The elastic energy of the Achilles tendon was measured during isometric contractions. Relative tendon elastic energy (to body mass) was highly correlated with jumping heights of CMJ, DJ10 and DJ20 but not with noCMJ and DJ30, whereas that was significantly correlated with pre-stretch augmentation in CMJ, but not with three DJs. The mEMG PLA/CON was significantly correlated with the pre-stretch augmentation of DJ20 and DJ30, but not with DJ10, whereas the mEMG ECC/CON was significantly correlated with the pre-stretch augmentation of DJ20 and DJ30, but not with CMJ and DJ10. These results suggested that jumping exercises with low pre-stretch intensity benefited from tendon elastic energy, but those with high pre-stretch intensity benefited from electromyographic activity patterns.
Assuntos
Tendão do Calcâneo , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Tendão do Calcâneo/fisiologia , Contração Isométrica/fisiologia , PoliésteresRESUMO
The assessment of the force-length relationship under mechanical loading is widely used to evaluate the mechanical properties of tendons and to gain information about their adaptation, function, and injury. This study aimed to provide a time-efficient ultrasound method for assessing Achilles tendon mechanical properties. On two days, eleven healthy young non-active adults performed eight maximal voluntary isometric ankle plantarflexion contractions on a dynamometer with simultaneous ultrasonographic recording. Maximal tendon elongation was assessed by digitizing ultrasound images at rest and at maximal tendon force. Achilles tendon stiffness index was calculated from the ratio of tendon force-to-strain. No within- and between-day differences were detected between the proposed method and manual frame by frame tracking in Achilles tendon maximal force, maximal elongation, maximal strain, and stiffness index. The overall coefficient of variation between trials ranged from 3.4% to 10.3% and average difference in tendon tracking between methods was less than 0.6% strain. Furthermore, an additional assessment demonstrated significant differences between elite athletes, healthy young, and older adults in Achilles tendon force and stiffness index. Hence, the analysis has the potential to reliably and accurately monitor changes in Achilles tendon mechanical properties due to aging and altered mechanical loading in a time-efficient manner.
Assuntos
Tendão do Calcâneo , Tendão do Calcâneo/diagnóstico por imagem , Idoso , Humanos , Contração Isométrica , Músculo Esquelético/diagnóstico por imagem , Reprodutibilidade dos Testes , UltrassonografiaRESUMO
Participants exposed to a simulated slip with forward loss of balance (FLB) develop large lower limb joint moments which may be a limiting factor for those whose muscle-tendon units' (MTUs) properties are deteriorated. Whether the age-related decline in these properties limits participants' capacity to recover their balance following a slip with FLB remains unclear. We combined isokinetic dynamometry, ultrasound and EMG to understand how knee extensor and ankle plantarflexor muscle strength and power, rate of moment development, electromechanical delay, and tendon stiffness affected the balance of young (25.3 ± 3.9 years) and older adults (62.8 ± 7.1 years) when recovering from a single slip with FLB triggered whilst walking on a split-belt instrumented treadmill. Except for the patellar tendon's stiffness, knee extensor and ankle plantarflexor electromechanical delays, older adults' MTUs properties were deteriorated compared to those of young participants (p < 0.05). We found no significant relationship between age or the MTUs properties of participants and balance recovery. These findings provide additional support that neither maximal nor explosive strength training are likely to be successful in preventing a fall for healthy older adults, and that other type of interventions, such as task-specific training that has already proved efficacious in reducing the risk of falling, should be developed.
Assuntos
Tornozelo , Joelho , Idoso , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Joelho/fisiologia , Músculo Esquelético/fisiologia , Músculos , Tendões/fisiologia , Caminhada/fisiologiaRESUMO
During human running, the soleus, as the main plantar flexor muscle, generates the majority of the mechanical work through active shortening. The fraction of chemical energy that is converted into muscular work (enthalpy efficiency) depends on the muscle shortening velocity. Here, we investigated the soleus muscle fascicle behaviour during running with respect to the enthalpy efficiency as a mechanism that could contribute to improvements in running economy after exercise-induced increases of plantar flexor strength and Achilles tendon (AT) stiffness. Using a controlled longitudinal study design (n = 23) featuring a specific 14-week muscle-tendon training, increases in muscle strength (10%) and tendon stiffness (31%) and reduced metabolic cost of running (4%) were found only in the intervention group (n = 13, p < 0.05). Following training, the soleus fascicles operated at higher enthalpy efficiency during the phase of muscle-tendon unit (MTU) lengthening (15%) and in average over stance (7%, p < 0.05). Thus, improvements in energetic cost following increases in plantar flexor strength and AT stiffness seem attributed to increased enthalpy efficiency of the operating soleus muscle. The results further imply that the soleus energy production in the first part of stance, when the MTU is lengthening, may be crucial for the overall metabolic energy cost of running.
Assuntos
Tendão do Calcâneo , Corrida , Fenômenos Biomecânicos , Humanos , Estudos Longitudinais , Contração Muscular , Músculo EsqueléticoRESUMO
PURPOSE: The present study aimed to investigate the acute effects of dynamic stretching on neurophysiological and mechanical properties of plantar flexor muscles and to test the hypothesis that dynamic stretching resulted from an interaction between stretching, movement, and contraction. METHODS: The dynamic stretching conditioning activity (DS) was compared to static stretching (SS), passive cyclic stretching (PCS), isometric contractions (IC), static stretching followed by isometric contractions (SSIC), and control (CO) conditions. Stretching amplitude (DS, SS, PCS and SSIC), contraction intensity (DS, IC and SSIC) and duration (all 6 conditions) were matched. Thirteen volunteers were included. Passive torque, fascicle length, and stiffness were evaluated from a dynamometer and ultrasonography during passive dorsiflexion. Neuromuscular electrical stimulation was used to investigate contractile properties [peak twitch torque (PTT), and rate of torque development (RTD)] and muscle voluntary activation (%VA). Gastrocnemius lateralis electromyographic activity (GL EMG/Mwave) was obtained during maximal voluntary contraction. All of these parameters were measured immediately before and 10 s after each experimental condition. RESULTS: Peak twitch torque, RTD, %VA, GL EMG/Mwave remained unaltered, while passive torque was significantly reduced after DS (- 8.14 ± 2.21%). SS decreased GL EMG/Mwave (- 7.83 ± 12.01%) and passive torque (- 2.16 ± 7.25%). PCS decreased PTT (- 3.40 ± 6.03%), RTD (- 2.96 ± 5.16%), and passive torque (- 2.16 ± 2.05%). IC decreased passive torque (- 7.72 ± 1.97%) and enhanced PTT (+ 5.77 ± 5.19%) and RTD (+ 7.36 ± 8.35%). However, SSIC attenuated PTT and RTD improvements as compared to IC. CONCLUSION: These results suggested that dynamic stretching is multi-component and would result from an interaction between stretching, contraction, and movement.
Assuntos
Contração Isométrica/fisiologia , Força Muscular/fisiologia , Exercícios de Alongamento Muscular/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Masculino , Movimento , Contração Muscular , Amplitude de Movimento Articular , Adulto JovemRESUMO
Background and Objectives: Whole body vibration is widely used to enhance muscle performance, but evidence of its effects on the tendon stiffness of the knee extensor tendon in stroke remains inconclusive. Our study was aimed to determine the difference in patellar and quadriceps tendon stiffness between hemiparetic and unaffected limbs in stroke patients and to investigate the immediate effect of whole body vibration on tendon stiffness. Materials and Methods: The patellar and quadriceps tendon stiffness of first-ever hemiplegic stroke patients was evaluated with elastography to compare the differences between hemiparetic and unaffected limbs. After one 20 min session of whole body vibration exercise in the standing position, tendon stiffness was again measured to evaluate the immediate effects of whole body vibration on tendon stiffness. Results: The results showed no significant differences in the tendon stiffness of the patellar and quadriceps tendons between hemiparetic and unaffected limbs. However, significant associations were found between the tendon stiffness of the patellar and quadriceps tendons and knee extensor spasticity on the hemiparetic side (ρ = 0.62; p = 0.044). There were no significant changes in tendon stiffness after a single session of whole body vibration. Conclusions: In conclusion, knee extensor tendon stiffness in hemiparetic limbs is positively correlated to the degree of knee extensor spasticity in stroke patients. However, a single session of whole body vibration does not alter tendon stiffness.
Assuntos
Acidente Vascular Cerebral , Vibração , Humanos , Patela , Músculo Quadríceps , Acidente Vascular Cerebral/complicações , Tendões , Vibração/uso terapêuticoRESUMO
Higher stiffness of the Achilles tendon (AT) and gastrocnemius have been found to be risk factors associated with Achilles tendinitis. Static stretching (SS) is one intervention that has been investigated to improve the flexibility and therefore reduce injury risk. Previous studies have investigated the acute effect of SS on one region for AT and gastrocnemius morphology and stiffness; however, there is a lack of knowledge about the effect of SS on other regions of the AT and gastrocnemius (e.g., proximal vs. distal, within gastrocnemius). The aims of the present study were: (1) to investigate the acute effects of SS on the shear modulus of the medial gastrocnemius muscles (MG) and lateral gastrocnemius muscles (LG) and AT for different regions; (2) to examine the differences in range of motion (ROM) before and after SS; and (3) to investigate the change of thickness of AT and fascicle length of MG and LG before and after SS. The stiffness of AT and the gastrocnemius, fascicle length of the muscles, thickness of the AT, and maximal ankle joint dorsiflexion angle were measured in thirty healthy subjects (15 males, 15 females) before(pre) and immediately after (post) 5-minute SS. Stretching effects are not homogeneous among different regions. After SS administration, the proximal, middle, and distal regions of MG stiffness decreased by 34.12%, 22.45%, and 25.27%, respectively (p = 0.000), and LG stiffness decreased by 37.71%, 30.47%, and 22.13%, respectively (p = 0.000), whereas AT stiffness increased by 25.73%, 17.01%, and 19.53%, respectively (p= 0.000). ROM of ankle joint increased by 8.02% (p=0.00). Nevertheless, there were no changes in the thickness of AT and fascicle length of the gastrocnemius. These results suggest that non-uniform behaviour is consistently present within the gastrocnemius and AT, and the gastrocnemius heterogeneity is reduced after SS. The stretching maneuver could be effective to increase the flexibility.
Assuntos
Tendão do Calcâneo/fisiologia , Exercícios de Alongamento Muscular/métodos , Músculo Esquelético/fisiologia , Tendão do Calcâneo/anatomia & histologia , Tendão do Calcâneo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Módulo de Elasticidade/fisiologia , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Masculino , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Amplitude de Movimento Articular/fisiologia , Adulto JovemRESUMO
The plantarflexors play a crucial role in recovery from sudden disturbances to gait. The objective of this study was to investigate whether medium (months)- or long(years)-term exercise-induced enhancement of triceps surae (TS) neuromuscular capacities affects older adults' ability to retain improvements in reactive gait stability during perturbed walking acquired from perturbation training sessions. Thirty-four adult women (65 ± 7 yr) were recruited to a perturbation training group ( n = 13) or a group that additionally completed 14 wk of TS neuromuscular exercise ( n = 21), 12 of whom continued with the exercise for 1.5 yr. The margin of stability (MoS) was analyzed at touchdown of the perturbed step and the first recovery step following eight separate unexpected trip perturbations during treadmill walking. TS muscle-tendon unit mechanical properties and motor skill performance were assessed with ultrasonography and dynamometry. Two perturbation training sessions (baseline and after 14 wk) caused an improvement in the reactive gait stability to the perturbations (increased MoS) in both groups. The perturbation training group retained the reactive gait stability improvements acquired over 14 wk and over 1.5 yr, with a minor decay over time. Despite the improvements in TS capacities in the additional exercise group, no benefits for the reactive gait stability following perturbations were identified. Therefore, older adults' neuromotor system shows rapid plasticity to repeated unexpected perturbations and an ability to retain these adaptations in reactive gait stability over a long time period, but an additional exercise-related enhancement of TS capacities seems not to further improve these effects. NEW & NOTEWORTHY Older adults' neuromotor system shows rapid plasticity to repeated exposure to unexpected perturbations to gait and an ability to retain the majority of these adaptations in reactive recovery responses over a prolonged time period of 1.5 yr. However, an additional exercise-related enhancement of TS neuromuscular capacities is not necessarily transferred to the recovery behavior during unexpected perturbations to gait in older adults.
Assuntos
Envelhecimento/fisiologia , Exercício Físico , Marcha , Músculo Esquelético/fisiologia , Equilíbrio Postural , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Destreza Motora , Músculo Esquelético/crescimento & desenvolvimentoRESUMO
This study aimed to determine the relationship between Achilles tendon (AT) length and running performance, including running economy, in well-trained endurance runners. We also examined the reasonable portion of the AT related to running performance among AT lengths measured in three different portions. The AT lengths at three portions and cross-sectional area (CSA) of 30 endurance runners were measured using magnetic resonance imaging. Each AT length was calculated as the distance from the calcaneal tuberosity to the muscle-tendon junction of the soleus, gastrocnemius medialis (GMAT ), and gastrocnemius lateralis, respectively. These AT lengths were normalized with shank length. The AT CSA was calculated as the average of 10, 20, and 30 mm above the distal insertion of the AT and normalized with body mass. Running economy was evaluated by measuring energy cost during three 4-minutes submaximal treadmill running trials at 14, 16, and 18 km/h, respectively. Among three AT lengths, only a GMAT correlated significantly with personal best 5000-m race time (r=-.376, P=.046). Furthermore, GMAT correlated significantly with energy cost during submaximal treadmill running trials at 14 km/h and 18 km/h (r=-.446 and -.429, respectively, P<.05 for both), and a trend toward such significance was observed at 16 km/h (r=-.360, P=.050). In contrast, there was no correlation between AT CSA and running performance. These findings suggest that longer AT, especially GMAT , may be advantageous to achieve superior running performance, with better running economy, in endurance runners.
Assuntos
Tendão do Calcâneo/anatomia & histologia , Desempenho Atlético , Corrida/fisiologia , Tendão do Calcâneo/diagnóstico por imagem , Adolescente , Teste de Esforço , Humanos , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/fisiologia , Adulto JovemRESUMO
This study compared professional ballet dancers (n = 10) to nonstretching controls (n = 10) with the purpose of comparing muscle and tendon morphology, mechanical, neural, and functional properties of the triceps surae and their role for ankle joint flexibility. Torque-angle and torque-velocity data were obtained during passive and active conditions by use of isokinetic dynamometry, while tissue morphology and mechanical properties were evaluated by ultrasonography. Dancers displayed longer gastrocnemius medialis fascicles (55 ± 5 vs 47 ± 6 mm) and a longer (207 ± 33 vs 167 ± 10 mm) and more compliant (230 ± 87 vs 364 ± 106 N/mm) Achilles tendon compared to controls. Greater passive ankle dorsiflexion range of motion (40 ± 7 vs 17 ± 9°) was seen in dancers, resulting from greater fascicle strain and greater elongation of the muscle. Peak electromyographic (EMG) activity recorded during passive stretching was lower in dancers, and at common joint angles, dancers displayed lower EMG amplitude and lower passive joint stiffness. No differences between groups were seen in maximal isometric plantar flexor torque, isokinetic peak torque, angle of peak torque, or work. In conclusion, the greater ankle joint flexibility of professional dancers seems attributed to multiple differences in morphological and mechanical properties of muscle and tendinous tissues, and to factors related to neural activation.
Assuntos
Tendão do Calcâneo/fisiologia , Articulação do Tornozelo/fisiologia , Dança , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Adulto , Atletas , Estudos de Casos e Controles , Feminino , Humanos , Torque , Adulto JovemRESUMO
PURPOSE: To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon morphological and mechanical properties) during a 12-week high-load plantar flexion training program. METHODS: Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion. Tendon force-elongation and stress-strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks. RESULTS: At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young's modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young's modulus (87% increase), and at post-8 in CSA (15% increase). CONCLUSIONS: Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties.
Assuntos
Tendão do Calcâneo/fisiologia , Contração Isométrica , Músculo Esquelético/fisiologia , Condicionamento Físico Humano/métodos , Adaptação Fisiológica , Adolescente , Adulto , Módulo de Elasticidade , Humanos , Masculino , Força Muscular , TorqueRESUMO
PURPOSE: The purpose of the present study was to compare the effects of eccentric training with different training frequencies on the blood circulation, collagen orientation, and mechanical properties of the human Achilles tendon in vivo. METHODS: Ten healthy males completed 12 weeks of a unilateral eccentric training program {(15 repetitions with knee straight and 15 repetitions with knee slightly bent) × 6 sets in a single session} for the plantar flexor muscles. They performed training three times per week on one side (3TW) and six times per week on the other side (6TW). Before and after training, changes in blood volume, coefficient of variation (CV) of echogenicity (reflects collagen fiber orientation), and stiffness of the Achilles tendon were compared by two-way analysis of variance. RESULTS: The tendon blood volume tended to increase after 3TW and 6TW (p = 0.064). Tendon stiffness did not change after 3TW and 6TW, whereas the elongation of tendon structures at three force levels (50, 100, and 150 N) significantly decreased with 3TW, but not 6TW. The CV of echogenicity significantly decreased after 3TW and 6TW. However, no significant differences were observed in the relative changes in these measured variables between 3TW and 6TW. CONCLUSION: The present results demonstrated an increase in blood volume, the alignment of collagen fibers, and unchanged stiffness of the Achilles tendon after 12 weeks of eccentric training. Furthermore, the training frequency did not influence these training-induced changes in the tendon properties.