Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921184

RESUMO

Agricultural subsurface drainage systems are commonly installed on farmland to remove the excess water from poorly drained soils. Conventional methods for drainage mapping such as tile probes and trenching equipment are laborious, cause pipe damage, and are often inefficient to apply at large spatial scales. Knowledge of locations of an existing drainage network is crucial to understand the increased leaching and offsite release of drainage discharge and to retrofit the new drain lines within the existing drainage system. Recent technological developments in non-destructive techniques might provide a potential alternative solution. The objective of this study was to determine the suitability of unmanned aerial vehicle (UAV) imagery collected using three different cameras (visible-color, multispectral, and thermal infrared) and ground penetrating radar (GPR) for subsurface drainage mapping. Both the techniques are complementary in terms of their usage, applicability, and the properties they measure and were applied at four different sites in the Midwest USA. At Site-1, both the UAV imagery and GPR were equally successful across the entire field, while at Site-2, the UAV imagery was successful in one section of the field, and GPR proved to be useful in the other section where the UAV imagery failed to capture the drainage pipes' location. At Site-3, less to no success was observed in finding the drain lines using UAV imagery captured on bare ground conditions, whereas good success was achieved using GPR. Conversely, at Site-4, the UAV imagery was successful and GPR failed to capture the drainage pipes' location. Although UAV imagery seems to be an attractive solution for mapping agricultural subsurface drainage systems as it is cost-effective and can cover large field areas, the results suggest the usefulness of GPR to complement the former as both a mapping and validation technique. Hence, this case study compares and contrasts the suitability of both the methods, provides guidance on the optimal survey timing, and recommends their combined usage given both the technologies are available to deploy for drainage mapping purposes.

2.
J Therm Biol ; 100: 103028, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503775

RESUMO

Under a warmer future climate, thermal refuges could facilitate the persistence of species relying on cold-water habitat. Often these refuges are small and easily missed or smoothed out by averaging in models. Thermal infrared (TIR) imagery can provide empirical water surface temperatures that capture these features at a high spatial resolution (<1 m) and over tens of kilometers. Our study examined how TIR data could be used along with spatial stream network (SSN) models to characterize thermal regimes spatially in the Middle Fork John Day (MFJD) River mainstem (Oregon, USA). We characterized thermal variation in seven TIR longitudinal temperature profiles along the MFJD mainstem and compared them with SSN model predictions of stream temperature (for the same time periods as the TIR profiles). TIR profiles identified reaches of the MFJD mainstem with consistently cooler temperatures across years that were not consistently captured by the SSN prediction models. SSN predictions along the mainstem identified ~80% of the 1-km reach scale temperature warming or cooling trends observed in the TIR profiles. We assessed whether landscape features (e.g., tributary junctions, valley confinement, geomorphic reach classifications) could explain the fine-scale thermal heterogeneity in the TIR profiles (after accounting for the reach-scale temperature variability predicted by the SSN model) by fitting SSN models using the TIR profile observation points. Only the distance to the nearest upstream tributary was identified as a statistically significant landscape feature for explaining some of the thermal variability in the TIR profile data. When combined, TIR data and SSN models provide a data-rich evaluation of stream temperature captured in TIR imagery and a spatially extensive prediction of the network thermal diversity from the outlet to the headwaters.


Assuntos
Raios Infravermelhos , Tecnologia de Sensoriamento Remoto/métodos , Rios , Termografia/métodos , Oregon , Temperatura
3.
Sensors (Basel) ; 20(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093335

RESUMO

Physical model testing can replicate the deformation process of landslide stabilizing piles and analyze the pile-landslide interaction with multiple field information, thoroughly demonstrating its deformation and failure mechanism. In this paper, an integrated monitoring system was introduced. The instrumentation used included soil pressure cells, thermal infrared (TIR) imagery, 3D laser scanner, and digital photography. In order to precisely perform field information analysis, an index was proposed to analyze thermal infrared temperature captured by infrared thermography; the qualitative relationship among stress state and deformation as well as thermal infrared temperature is analyzed. The results indicate that the integrated monitoring system is expected to be useful for characterizing the deformation process of a pile-reinforced landslide. Difference value of TIR temperature (TIRm) is a useful indicator for landslide detection, and its anomalies can be selected as a precursor to landslide deformation.

4.
Sensors (Basel) ; 20(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906025

RESUMO

A laboratory model test is an effective method for studying landslide risk mitigation. In this study, thermal infrared (TIR) imagery, a modern no-contact technique, was introduced and integrated with terrestrial laser scanning (TLS) and particle tracking velocimetry (PTV) to characterize the failure of a landslide model. The characteristics of the failure initiation, motion, and region of interest, including landslide volume, deformation, velocity, surface temperature changes, and anomalies, were detected using the integrated monitoring system. The laboratory test results indicate that the integrated monitoring system is expected to be useful for characterizing the failure of landslide models. The preliminary results of this study suggest that a change in the relative TIR signal (ΔTIR) can be a useful index for landslide detection, and a decrease in the average value of the temperature change ( Δ T I R ¯ ) can be selected as a precursor to landslide failure.

5.
Cureus ; 13(3): e13736, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33842114

RESUMO

The technology for deep learning in the field of thermal infrared face recognition has recently become more available for use in research, therefore allowing for the many groups working on this subject to achieve many novel findings. Thermal infrared face recognition helps recognize faces that are not able to be recognized in visible light and can additionally recognize facial blood vessel structure. Previous research regarding temperature variations, mathematical formulas, wave types, and methods in thermal infrared face recognition is reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA