RESUMO
Thermally activated delayed fluorescence (TADF) materials, which can harvest both singlet and triplet excitons for high-efficiency emission, have attracted widespread concern for their enormous applications. Nevertheless, luminescence thermal quenching severely limits the efficiency and operating stability in TADF materials and devices at high temperature. Herein, a surface engineering strategy is adopted to obtain unique carbon dots (CDs)-based thermally enhanced TADF materials with ≈250% enhancement from 273 to 343 K via incorporating seed CDs into ionic crystal network. The rigid crystal network can simultaneously boost reverse intersystem crossing process via enhancing spin-orbit coupling between singlet and triplet states and suppressing non-radiative transition rate, contributing to the thermally enhanced TADF character. Benefiting from efficient energy transfer from triplet states of phosphorescence center to singlet states of CDs, TADF emission at ≈600 nm in CDs displays a long lifetime up to 109.6 ms, outperforming other red organic TADF materials. Thanks to variable decay rates of the delayed emission centers, time and temperature-dependent delayed emission color has been first realized in CDs-based delayed emission materials. The CDs with thermally enhanced and time-/temperature-dependent emission in one material system can offer new opportunities in information protection and processing.