Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cryogenics (Guildf) ; 1242022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36733333

RESUMO

The second-stage regenerators of pulse tube refrigerators (PTRs) are routinely used to intercept heat loads without disturbing cooling at their base temperatures, often near 4 K. Gifford-McMahon cryocoolers (GMCs) have not yet demonstrated a similar capability to provide regenerator cooling, possibly because of the thermal resistance between their regenerator shell and core. Here we show that GMCs do have capacity to provide regenerator cooling when heat loads are applied directly on the outer regenerator shell, although to a lesser extent compared to PTRs of similar cooling capacity. For example, we intercepted a 900 mW heat load at 21.6 K using the second-stage regenerator of a GMC while only giving up 10 mW of cooling at 3 K (out of 270 mW). This performance may possibly be improved by optimizing heat exchange between heat source and regenerator shell. We provide detailed temperature profile measurements from both a GMC and a PTR while applying heat to the regenerators, showing distinct behavior between the two. We also show that for GMCs, the optimal location of heat injection should be farther from the cold end than for PTRs. Although the physical source of regenerator cooling is less clear for GMCs than it is for PTRs, a useful amount of cooling is available and warrants further study.

2.
Magn Reson Med ; 84(2): 1035-1047, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31883207

RESUMO

PURPOSE: We explore the use of thermo-acoustic ultrasound (TAUS) to monitor temperature at the tips of conductive device leads during MRI. THEORY: In TAUS, rapid radiofrequency (RF) power deposition excites an acoustic signal via thermoelastic expansion. Coupling of the MRI RF transmit to device leads causes SAR amplification at lead tips, allowing MRI RF transmitters to excite significant lead tip TAUS signals. Because the amplitude of the TAUS signal depends on temperature, it becomes feasible to monitor the lead tip temperature during MRI by tracking the TAUS amplitude. METHODS: The TAUS temperature dependence was characterized in a phantom and in tissue. To perform TAUS acquisitions in an MRI scanner, amplitude modulated RF chirps were transmitted by the body coil, and the lead tip TAUS signal was detected by an ultrasonic transducer. The TAUS signal level was correlated with the RF current induced on the lead and the associated B1 artifacts in MRI. TAUS signals acquired during RF-induced heating were used to estimate the lead tip temperature. RESULTS: The TAUS signal exhibited strong dependence on temperature, increasing over 30% with 10∘ C of heating both in the phantom and in tissue. A lead tip TAUS signal was observed for a 100 mA rms current induced on a lead. During RF-induced heating, the TAUS signal appeared to accurately approximate the peak lead tip temperature. CONCLUSIONS: TAUS allows for noninvasive monitoring of lead tip temperature in an MRI environment. With further development, TAUS opens new avenues to improve RF device safety during MRI scans.


Assuntos
Temperatura Alta , Ondas de Rádio , Acústica , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Temperatura
3.
Magn Reson Med ; 78(4): 1599-1606, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27779779

RESUMO

PURPOSE: To develop a new method capable of directly measuring specific absorption rate (SAR) deposited in tissue using the thermoacoustic signal induced by short radiofrequency (RF) pulse excitation. THEORY: A detailed model based on the thermoacoustic wave generation and propagation is presented. METHODS: We propose a new concept for direct measurement of SAR, to be used as a safety assessment/monitoring tool for MRI. The concept involves the use of short bursts of RF energy and the measurement of the resulting thermoacoustic excitation pattern by an array of ultrasound transducers, followed by image reconstruction to yield the 3D SAR distribution. We developed a simulation framework to model this thermoacoustic SAR mapping concept and verified the concept in vitro. RESULTS: Simulations show good agreement between reconstructed and original SAR distributions with an error of 4.2, 7.2, and 8.4% of the mean SAR values in axial, sagittal, and coronal planes and support the feasibility of direct experimental mapping of SAR distributions in vivo. The in vitro experiments show good agreement with theory (r2 = 0.52). CONCLUSIONS: A novel thermoacoustic method for in vivo mapping of local SAR patterns in MRI has been proposed and verified in simulation and in a phantom experiment. Magn Reson Med 78:1599-1606, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Acústica/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Absorção Fisico-Química , Simulação por Computador , Desenho de Equipamento , Estudos de Viabilidade , Cabeça/diagnóstico por imagem , Temperatura Alta , Humanos , Modelos Biológicos , Imagens de Fantasmas
4.
ACS Nano ; 18(12): 8988-8995, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478913

RESUMO

Solid-state fabricated carbon nanotube (CNT) sheets have shown promise as thermoacoustic (TA) sound generators, emitting tunable sound waves across a broad frequency spectrum (1-105 Hz) due to their ultralow specific heat capacity. However, their applications as underwater TA sound generators are limited by the reduced mechanical strength of CNT sheets in aqueous environments. In this study, we present a mechanically robust underwater TA device constructed from a three-dimensional (3D) tetrapodal assembly of carbon nanotubes (t-CNTs). These structures feature a high porosity (>99.9%) and a double-hollowed network of well-interconnected CNTs. We systematically explore the impact of different dimensions of t-CNTs and various annealing procedures on sound generation performance. Furnace-annealed t-CNTs, in contrast to directly resistive Joule heating annealing, provide superior, continuous, and homogeneous hydrophobicity across the surface of bulk t-CNTs. As a result, the t-CNTs-based underwater TA device demonstrates stable, smooth, and broad-spectrum sound generation within the frequency range of 1 × 102 to 1 × 104 Hz, along with a weak resonance response. Furthermore, these devices exhibit enhanced and more stable sound generation performance at nonresonance frequencies compared to regular CNT-based devices. This study contributes to advancing the development of underwater TA devices with characteristics such as being nonresonant, high-performing, flexible, elastically compressible, and reliable, enabling operation across a broad frequency range.

5.
Phys Med Biol ; 68(5)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36749987

RESUMO

Ionizing radiation pulses delivered at ultra-high dose rates in emerging FLASH radiotherapy can result in high-intensity low-frequency thermoacoustic emissions that may have a biological impact. This study aims at providing insights into the thermoacoustic emissions expected during FLASH radiotherapy and their likelihood of inducing acoustic cavitation. The characteristics of acoustic waves induced by the energy deposition of a pulsed electron beam similar to previous pre-clinical FLASH radiotherapy studies and their propagation in murine head-like phantoms are investigated in-silico. The results show that the generated pressures are sufficient to produce acoustic cavitation due to resonance in the irradiated object. It suggests that thermoacoustics may, in some irradiation scenarios, contribute to the widely misunderstood FLASH effect or cause adverse effects if not taken into account at the treatment planning stage.


Assuntos
Acústica , Elétrons , Camundongos , Animais , Dosagem Radioterapêutica , Som , Radioterapia
6.
Phys Med Biol ; 68(10)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37011627

RESUMO

Objectives.The energy deposited in a medium by a pulsed proton beam results in the emission of thermoacoustic waves, also called ionoacoustics (IA). The proton beam stopping position (Bragg peak) can be retrieved from a time-of-flight analysis (ToF) of IA signals acquired at different sensor locations (multilateration). This work aimed to assess the robustness of multilateration methods in proton beams at pre-clinical energies for the development of a small animal irradiator.Approach.The accuracy of multilateration performed using different algorithms; namely, time of arrival and time difference of arrival, was investigatedin-silicofor ideal point sources in the presence of realistic uncertainties on the ToF estimation and ionoacoustic signals generated by a 20 MeV pulsed proton beam stopped in a homogeneous water phantom. The localisation accuracy was further investigated experimentally based on two different measurements with pulsed monoenergetic proton beams at energies of 20 and 22 MeV.Main results.It was found that the localisation accuracy mainly depends on the position of the acoustic detectors relative to the proton beam due to spatial variation of the error on the ToF estimation. By optimally positioning the sensors to reduce the ToF error, the Bragg peak could be locatedin-silicowith an accuracy better than 90µm (2% error). Localisation errors going up to 1 mm were observed experimentally due to inaccurate knowledge of the sensor positions and noisy ionoacoustic signals.Significance.This study gives a first overview of the implementation of different multilateration methods for ionoacoustics-based Bragg peak localisation in two- and three-dimensions at pre-clinical energies. Different sources of uncertainty were investigated, and their impact on the localisation accuracy was quantifiedin-silicoand experimentally.


Assuntos
Terapia com Prótons , Radioatividade , Prótons , Terapia com Prótons/métodos , Água , Acústica , Método de Monte Carlo , Dosagem Radioterapêutica
7.
Med Phys ; 48(10): 6069-6079, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34287972

RESUMO

PURPOSE: Almost one in four lumpectomies fails to fully remove cancerous tissue from the breast, requiring reoperation. This high failure rate suggests that existing lumpectomy guidance methods are inadequate for allowing surgeons to consistently identify the proper volume of tissue for excision. Current guidance techniques either provide little information about the tumor position or require surgeons to frequently switch between making incisions and manually probing for a marker placed at the lesion site. This article explores the feasibility of thermo-acoustic ultrasound (TAUS) to enable hands-free localization of metallic biopsy markers throughout surgery, which would allow for continuous visualization of the lesion site in the breast without the interruption of surgery. In a TAUS-based localization system, microwave excitations would be transmitted into the breast, and the amplification in microwave absorption around the metallic markers would generate acoustic signals from the marker sites through the thermo-acoustic effect. Detection and ranging of these signals by multiple acoustic receivers on the breast could then enable marker localization through acoustic multilateration. METHODS: Physics simulations were used to characterize the TAUS signals generated from different markers by microwave excitations. First, electromagnetic simulations determined the spatial pattern of the amplification in microwave absorption around the markers. Then, acoustic simulations characterized the acoustic fields generated from these markers at various acoustic frequencies. TAUS-based one-dimensional (1D) ranging of two metallic markers-including a biopsy marker that is FDA-approved for clinical use-immersed in saline was also performed using a bench-top setup. To perform TAUS acquisitions, a microwave applicator was driven by 2.66 GHz microwave signals that were amplitude-modulated by chirps at the desired acoustic excitation frequencies, and the resulting TAUS signal from the markers was detected by an ultrasonic transducer. RESULTS: The simulation results show that the geometry of the marker strongly impacts the quantity and spatial pattern of both the microwave absorption around the marker and the resulting TAUS signal generated from the marker. The simulated TAUS signal maps and acoustic frequency responses also make clear that the marker geometry plays an important role in determining the overall system response. Using the bench-top setup, TAUS detection and 1D localization of the markers were successfully demonstrated for multiple different combinations of microwave applicator and metallic marker. These initial results indicate that TAUS-based localization of biopsy markers is feasible. CONCLUSIONS: Through microwave excitations and acoustic detection, TAUS can be used to localize metallic biopsy markers. With further development, TAUS opens new avenues to enable a more intuitive lumpectomy guidance system that could help to achieve better lumpectomy outcomes.


Assuntos
Neoplasias da Mama , Mastectomia Segmentar , Acústica , Biópsia , Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Humanos , Ultrassonografia
8.
Phys Med Biol ; 66(18)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34438378

RESUMO

The sharp spatial and temporal dose gradients of pulsed ion beams result in an acoustic emission (ionoacoustics), which can be used to reconstruct the dose distribution from measurements at different positions. The accuracy of range verification from ionoacoustic images measured with an ultrasound linear array configuration is investigated both theoretically and experimentally for monoenergetic proton beams at energies relevant for pre-clinical studies (20 and 22 MeV). The influence of the linear sensor array arrangement (length up to 4 cm and number of elements from 5 to 200) and medium properties on the range estimation accuracy are assessed using time-reversal reconstruction. We show that for an ideal homogeneous case, the ionoacoustic images enable a range verification with a relative error lower than 0.1%, however, with limited lateral dose accuracy. Similar results were obtained experimentally by irradiating a water phantom and taking into account the spatial impulse response (geometry) of the acoustic detector during the reconstruction of pressures obtained by moving laterally a single-element transducer to mimic a linear array configuration. Finally, co-registered ionoacoustic and ultrasound images were investigated using silicone inserts immersed in the water phantom across the proton beam axis. By accounting for the sensor response and speed of sound variations (deduced from co-registration with ultrasound images) the accuracy is improved to a few tens of micrometers (relative error less than to 0.5%), confirming the promise of ongoing developments for ionoacoustic range verification in pre-clinical and clinical proton therapy applications.


Assuntos
Terapia com Prótons , Prótons , Acústica , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica
9.
Photoacoustics ; 21: 100240, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33520652

RESUMO

Proton radiotherapy has the potential to provide state-of-the-art dose conformality in the tumor area, reducing possible adverse effects on surrounding organs at risk. However, uncertainties in the exact location of the proton Bragg peak inside the patient prevent this technique from achieving full clinical potential. In this context, in vivo verification of the range of protons in patients is key to reduce uncertainty margins. Protoacoustic range verification employs acoustic pressure waves generated by protons due to the radio-induced thermoacoustic effect to reconstruct the dose deposited in a patient during proton therapy. In this paper, we propose to use the a priori knowledge of the shape of the proton dose distribution to create a dictionary with the expected ultrasonic signals at predetermined detector locations. Using this dictionary, the reconstruction of deposited dose is performed by matching pre-calculated dictionary acoustic signals with data acquired online during treatment. The dictionary method was evaluated on a single-field proton plan for a prostate cancer patient. Dose calculation was performed with the open-source treatment planning system matRad, while acoustic wave propagation was carried out with k-Wave. We studied the ability of the proposed dictionary method to detect range variations caused by anatomical changes in tissue density, and alterations of lateral and longitudinal beam position. Our results show that the dictionary-based protoacoustic method was able to identify the changes in range originated by all the alterations introduced, with an average accuracy of 1.4 mm. This procedure could be used for in vivo verification, comparing the measured signals with the precalculated dictionary.

10.
Neurosurgery ; 87(1): 11-24, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31620798

RESUMO

The evolution of neurosurgery has been, and continues to be, closely associated with innovations in technology. Modern neurosurgery is wed to imaging technology and the future promises even more dependence on anatomic and, perhaps more importantly, functional imaging. The photoacoustic phenomenon was described nearly 140 yr ago; however, biomedical applications for this technology have only recently received significant attention. Light-based photoacoustic and microwave-based thermoacoustic technologies represent novel biomedical imaging modalities with broad application potential within and beyond neurosurgery. These technologies offer excellent imaging resolution while generally considered safer, more portable, versatile, and convenient than current imaging technologies. In this review, we summarize the current state of knowledge regarding photoacoustic and thermoacoustic imaging and their potential impact on the field of neurosurgery.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Neurocirurgia/métodos , Técnicas Fotoacústicas/métodos , Humanos
11.
Top Curr Chem (Cham) ; 377(2): 10, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30874921

RESUMO

A material that can serve in almost every field of human life at very low cost with high results is no other than "graphene". The multifunctional properties of graphene have made it a very interesting topic of research among researchers. Since its discovery in the last decade of the last century, scientists continue to disclose the amazing properties of graphene day by day. By last year, the number of publications on graphene applications had reached many thousands per year, which is a record absolutely. The main objectives of this review were to provide an eye-catching view of graphene properties discovered in the last few years. This review aims to report some "green synthesis" methods for synthesizing graphene from low cost/no cost materials having no side effects of any kind. Fabrication of graphene to produce composite materials is another milestone that is discussed in this review, giving recent examples. "Graphene membranes" can serve not only for the separation of different gases but find a main use in the supply of safe drinking water to all countries. "Graphene energy" can be utilized for the production of graphene batteries with much better charging capacity than the traditionally used lithium batteries. Graphene superconductors and magnets exhibit better performance than previously used materials for these purposes. Graphene inks can bring about a revolution in the field of printed electronics. A very recent development is graphene clothing and shoes. Graphene glasses, paints, rubber bands and disease detectors are among other graphene-based materials developed for human use. This review percolates recent advancements in graphene and its applications, which have brought about positive and revolutionary change in different fields of human welfare.


Assuntos
Grafite/química , Técnicas Biossensoriais , Portadores de Fármacos/química , Fontes de Energia Elétrica , Gases/química , Gases/isolamento & purificação , Grafite/síntese química , Tinta , Magnetismo , Membranas Artificiais , Nanocompostos/química , Semicondutores
12.
R Soc Open Sci ; 5(3): 172078, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657803

RESUMO

Complex systems exhibiting critical transitions when one of their governing parameters varies are ubiquitous in nature and in engineering applications. Despite a vast literature focusing on this topic, there are few studies dealing with the effect of the rate of change of the bifurcation parameter on the tipping points. In this work, we consider a subcritical stochastic Hopf bifurcation under two scenarios: the bifurcation parameter is first changed in a quasi-steady manner and then, with a finite ramping rate. In the latter case, a rate-dependent bifurcation delay is observed and exemplified experimentally using a thermoacoustic instability in a combustion chamber. This delay increases with the rate of change. This leads to a state transition of larger amplitude compared with the one that would be experienced by the system with a quasi-steady change of the parameter. We also bring experimental evidence of a dynamic hysteresis caused by the bifurcation delay when the parameter is ramped back. A surrogate model is derived in order to predict the statistic of these delays and to scrutinize the underlying stochastic dynamics. Our study highlights the dramatic influence of a finite rate of change of bifurcation parameters upon tipping points, and it pinpoints the crucial need of considering this effect when investigating critical transitions.

13.
Photoacoustics ; 28: 100415, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532961
14.
Med Phys ; 44(2): 608-617, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28121381

RESUMO

PURPOSE: The aim of this work was to experimentally demonstrate the feasibility of x-ray acoustic computed tomography (XACT) as a dosimetry tool in a clinical radiotherapy environment. METHODS: The acoustic waves induced following a single pulse of linear accelerator irradiation in a water tank were detected with an immersion ultrasound transducer. By rotating the collimator and keeping the transducer stationary, acoustic signals at varying angles surrounding the field were detected and reconstructed to form an XACT image. Simulated XACT images were obtained using a previously developed simulation workflow. Profiles extracted from experimental and simulated XACT images were compared to profiles measured with an ion chamber. A variety of radiation field sizes and shapes were investigated. RESULTS: XACT images resembling the geometry of the delivered radiation field were obtained for fields ranging from simple squares to more complex shapes. When comparing profiles extracted from simulated and experimental XACT images of a 4 cm × 4 cm field, 97% of points were found to pass a 3%/3 mm gamma test. Agreement between simulated and experimental XACT images worsened when comparing fields with fine details. Profiles extracted from experimental XACT images were compared to profiles obtained through clinical ion chamber measurements, confirming that the intensity of XACT images is related to deposited radiation dose. Seventy-seven percent of the points in a profile extracted from an experimental XACT image of a 4 cm × 4 cm field passed a 7%/4 mm gamma test when compared to an ion chamber measured profile. In a complicated puzzle-piece shaped field, 86% of the points in an XACT extracted profile passed a 7%/4 mm gamma test. CONCLUSIONS: XACT images with intensity related to the spatial distribution of deposited dose in a water tank were formed for a variety of field sizes and shapes. XACT has the potential to be a useful tool for absolute, relative and in vivo dosimetry.


Assuntos
Acústica , Radiometria/métodos , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador , Radiometria/instrumentação
15.
Flow Turbul Combust ; 98(1): 311-326, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30174548

RESUMO

The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be used to suppress acoustic streaming in closed-loop thermoacoustic devices. An experimental setup is used to measure the time-averaged pressure drop as well as the acoustic power dissipation across two different jet pump geometries in a pure oscillatory flow. The results are compared against published numerical results where flow separation was found to have a negative effect on the jet pump performance in a laminar flow. Using hot-wire anemometry the onset of flow separation is determined experimentally and the applicability of a critical Reynolds number for oscillatory pipe flows is confirmed for jet pump applications. It is found that turbulence can lead to a reduction of flow separation and hence, to an improvement in jet pump performance compared to laminar oscillatory flows.

16.
ACS Appl Mater Interfaces ; 8(45): 31192-31201, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27776207

RESUMO

Thermoacoustic performance of thin freestanding sheets of carbonized poly(acrylonitrile) and polybenzimidazole nanofibers are studied as promising candidates for thermophones. We analyze thermodynamic properties of sheets using transport parameters of single nanofibers and their aligned and randomly electrospun thin film assemblies. The electrical and thermal conductivities, thermal diffusivity, heat capacity, and infrared blackbody radiation are investigated to extract the heat exchange coefficient and enhance the energy conversion efficiency. Spectral and power dependencies of sound pressure in air are compared with carbon nanotube sheets and theoretical prediction. Despite lower thermoacoustic performance compared to that of CNT sheets, the mechanical strength and cost-effective production technology of thermophones make them very attractive for large-size sound projectors. The advantages of carbonized electrospun polymer nanofiber sheets are in the low frequency domain (<1000 Hz), where the large thermal diffusion length diminishes the thermal inertia of thick (∼200 nm) nonbundled fibers and the high intrinsic thermal conductivity of fibers enhances the heat exchange coefficient. Applications of thermoacoustic projectors for loudspeakers, high power SONAR arrays, and sound cancellation are discussed.

17.
Adv Mater ; 28(31): 6672-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27214267

RESUMO

The selective growth of Al2 O3 islands over defect sites on the surface of carbon nanotubes significantly increases the oxidation breakdown threshold to 6.8 W cm(-2) , more than double than that of unprotected films. The elevated input power enables thermoacoustic emissions at loud audible sound pressure levels of 90.1 dB, which are inaccessible with the unprotected films.

18.
Proc Math Phys Eng Sci ; 472(2191): 20160182, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27493567

RESUMO

This paper brings a novel mathematical perspective in assessing the rise of the secondary dynamic modes to prominence during the suppression of thermoacoustic instability. This phenomenon is observed by many earlier investigators; however, without a complete analytical reasoning. We consider a Rijke tube with both a passive Helmholtz resonator and an active feedback control to suppress instabilities. The core dynamics is represented as a linear time-invariant multiple time-delay system of neutral type. Parametric stability of the resulting infinite-dimensional dynamics is investigated using a recent analytical tool: cluster treatment of characteristic roots paradigm. This tool reveals the stability outlook of such systems exhaustively and non-conservatively in the parameter space of the system. First, we examine the stability with and without the Helmholtz resonator. We then select an unstable operation for the resonator-mounted Rijke tube, impose a time-delayed integral feedback control over it and reveal the stabilizing controller parameters using the cluster treatment of characteristic roots methodology. When high control gains are inappropriately selected, the new analytical procedure declares how the secondary dynamic modes of the system exhibit instability although the initially unstable mode is now stabilized. All of these stability assessments are cross-validated using experimental results from a laboratory-scale Rijke tube set-up.

19.
ACS Nano ; 9(5): 4743-56, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25748853

RESUMO

Thermophones are highly promising for applications such as high-power SONAR arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding carbon nanotube aerogel sheets provide the most attractive performance as a thermoacoustic heat source. However, the limited accessibility of large-size freestanding carbon nanotube aerogel sheets and other even more exotic materials recently investigated hampers the field. We describe alternative materials for a thermoacoustic heat source with high-energy conversion efficiency, additional functionalities, environmentally friendly, and cost-effective production technologies. We discuss the thermoacoustic performance of alternative nanostructured materials and compare their spectral and power dependencies of sound pressure in air. We demonstrate that the heat capacity of aerogel-like nanostructures can be extracted by a thorough analysis of the sound pressure spectra. The study presented here focuses on engineering thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of thermoacoustic projectors for high-power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA