Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Mol Cell ; 82(21): 4160-4175.e6, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36272409

RESUMO

CRISPR-Cas9-mediated genome editing depends on PAM recognition to initiate DNA unwinding. PAM mutations can abolish Cas9 binding and prohibit editing. Here, we identified a Cas9 from the thermophile Alicyclobacillus tengchongensis for which the PAM interaction can be robustly regulated by DNA topology. AtCas9 has a relaxed PAM of N4CNNN and N4RNNA (R = A/G) and is able to bind but not cleave targets with mutated PAMs. When PAM-mutated DNA was in underwound topology, AtCas9 exhibited enhanced binding affinity and high cleavage activity. Mechanistically, AtCas9 has a unique loop motif, which docked into the DNA major groove, and this interaction can be regulated by DNA topology. More importantly, AtCas9 showed near-PAMless editing of supercoiled plasmid in E. coli. In mammalian cells, AtCas9 exhibited broad PAM preference to edit plasmid with up to 72% efficiency and effective base editing at four endogenous loci, representing a potentially powerful tool for near-PAMless editing.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , DNA/genética , Plasmídeos , Mamíferos/metabolismo
2.
BMC Genomics ; 25(1): 44, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195395

RESUMO

BACKGROUND: The transcription factors (TFs) in thermophilic cyanobacteria might represent a uniquely evolved gene repertoire in light of the strong selective pressure caused by hostile habitats. Understanding the molecular composition of the TF genes in thermophilic cyanobacteria will facilitate further studies regarding verifying their exact biochemical functions and genetic engineering. However, limited information is available on the TFs of thermophilic cyanobacteria. Herein, a thorough investigation and comparative analysis were performed to gain insights into the molecular composition of the TFs in 22 thermophilic cyanobacteria. RESULTS: The results suggested a fascinating diversity of the TFs among these thermophiles. The abundance and type of TF genes were diversified in these genomes. The identified TFs are speculated to play various roles in biological regulations. Further comparative and evolutionary genomic analyses revealed that HGT may be associated with the genomic plasticity of TF genes in Thermostichus and Thermosynechococcus strains. Comparative analyses also indicated different pattern of TF composition between thermophiles and corresponding mesophilic reference cyanobacteria. Moreover, the identified unique TFs of thermophiles are putatively involved in various biological regulations, mainly as responses to ambient changes, may facilitating the thermophiles to survive in hot springs. CONCLUSION: The findings herein shed light on the TFs of thermophilic cyanobacteria and fundamental knowledge for further research regarding thermophilic cyanobacteria with a broad potential for transcription regulations in responses to environmental fluctuations.


Assuntos
Cianobactérias , Fatores de Transcrição , Fatores de Transcrição/genética , Cianobactérias/genética , Genômica , Evolução Biológica , Engenharia Genética
3.
Metab Eng ; 83: 39-51, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490636

RESUMO

Parageobacillus thermoglucosidasius is a thermophilic and facultatively anaerobic microbe, which is emerging as one of the most promising thermophilic model organisms for metabolic engineering. The use of thermophilic microorganisms for industrial bioprocesses provides the advantages of increased reaction rates and reduced cooling costs for bioreactors compared to their mesophilic counterparts. Moreover, it enables starch or lignocellulose degradation and fermentation to occur at the same temperature in a Simultaneous Saccharification and Fermentation (SSF) or Consolidated Bioprocessing (CBP) approach. Its natural hemicellulolytic capabilities and its ability to convert CO to metabolic energy make P. thermoglucosidasius a potentially attractive host for bio-based processes. It can effectively degrade hemicellulose due to a number of hydrolytic enzymes, carbohydrate transporters, and regulatory elements coded from a genomic cluster named Hemicellulose Utilization (HUS) locus. The growing availability of effective genetic engineering tools in P. thermoglucosidasius further starts to open up its potential as a versatile thermophilic cell factory. A number of strain engineering examples showcasing the potential of P. thermoglucosidasius as a microbial chassis for the production of bulk and fine chemicals are presented along with current research bottlenecks. Ultimately, this review provides a holistic overview of the distinct metabolic characteristics of P. thermoglucosidasius and discusses research focused on expanding the native metabolic boundaries for the development of industrially relevant strains.


Assuntos
Engenharia Metabólica , Polissacarídeos/metabolismo , Polissacarídeos/genética , Bacillaceae/genética , Bacillaceae/metabolismo
4.
Appl Environ Microbiol ; 90(2): e0109023, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259075

RESUMO

Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.


Assuntos
Bactérias , Euryarchaeota , Filogenia , Acetatos/metabolismo , Bactérias Anaeróbias/metabolismo , Euryarchaeota/metabolismo , Anaerobiose , Oxirredução , Firmicutes/metabolismo , Metano/metabolismo , Reatores Biológicos/microbiologia
5.
Mol Phylogenet Evol ; 197: 108094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723792

RESUMO

Thermophilic unicellular cyanobacteria of the family Thermosynechococcaceae are essential primary producers and integral components of many microbial mats found in hot springs of Asia and North America. Historically, based on their simple morphology, these organisms, along with members of taxonomically unrelated thermophilic Thermostichaceae have been described with a generic term, "Synechococcus", used for elongated unicellular cyanobacteria. This has created significant misperception in the scientific literature regarding the taxonomic status of these essential thermophilic primary producers and their relationship with Synechococcus sensu stricto. In this manuscript, we attempted a genome-driven taxonomic reevaluation of the family Thermosynechococcaceae. Application of genomic analyses such as GTDB classification, ANI/AAI and phylogenomics support the delineation of eight species within genus Thermosynechococcus. Two subspecies were further identified within T. taiwanensis by dDDH and phylogenomics. Moreover, the results also suggest the presence of two putative new genera phylogenetically alongside genus Thermosynechococcus, a thermophilic genus Parathermosynechococcus represented by PCC 6715 and a non-thermophilic genus represented by PCC 6312. The proposed genospecies and new genera were further integrated with morphological and/or ecological information. Interestingly, the phylogeny of 16S-23S ITS achieved a better taxonomic relationship than that of 16S rRNA and supported the genome-based classification of Thermosynechococcus spp. Finally, the pan-genome analysis indicated a conserved pattern of genomic core among known members of Thermosynechococcus.


Assuntos
Filogenia , Fenótipo , Thermosynechococcus/genética , Thermosynechococcus/classificação , Genoma Bacteriano/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Genômica , Cianobactérias/genética , Cianobactérias/classificação
6.
Arch Microbiol ; 206(1): 53, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180563

RESUMO

The A. sendaiensis PA2 is a polyextremophile bacterium. In this study, we analyze the A. sendaiensis PA2 genome. The genome was assembled and annotated. The A. sendaiensis PA2 genome structure consists of a 2,956,928 bp long chromosome and 62.77% of G + C content. 3056 CDSs were predicted, and 2921 genes were assigned to a putative function. The ANIm and ANIb value resulted in 97.17% and 96.65%, the DDH value was 75.5%, and the value of TETRA (Z-score) was 0.98. Comparative genomic analyses indicated that three systems are enriched in A. sendaiensis PA2. This strain has phenotypic changes in cell wall during batch culture at 65 °C, pH 5.0 and without carbon and nitrogen source. The presence of unique genes of cell wall and sporulation subsystem could be related to the adaptation of A. sendaiensis PA2 to hostile conditions.


Assuntos
Alicyclobacillus , Temperatura , Parede Celular/genética , Concentração de Íons de Hidrogênio
7.
Protein Expr Purif ; 219: 106478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570105

RESUMO

Xylanases are the main enzymes to hydrolyze xylan, the major hemicellulose found in lignocellulose. Xylanases also have a wide range of industrial applications. Therefore, the discovery of new xylanases has the potential to enhance efficiency and sustainability in many industries. Here, we report a xylanase with thermophilic character and superior biochemical properties for industrial use. The new xylanase is discovered in Anoxybacillus ayderensis as an intracellular xylanase (AAyXYN329) and recombinantly produced. While AAyXYN329 shows significant activity over a wide pH and temperature range, optimum activity conditions were determined as pH 6.5 and 65 °C. The half-life of the enzyme was calculated as 72 h at 65 °C. The enzyme did not lose activity between pH 6.0-9.0 at +4 °C for 75 days. Km, kcat and kcat/Km values of AAyXYN329 were calculated as 4.09824 ± 0.2245 µg/µL, 96.75 1/sec, and 23.61/L/g.s -1, respectively. In conclusion, the xylanase of A. ayderensis has an excellent potential to be utilized in many industrial processes.


Assuntos
Anoxybacillus , Proteínas de Bactérias , Endo-1,4-beta-Xilanases , Estabilidade Enzimática , Proteínas Recombinantes , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Anoxybacillus/enzimologia , Anoxybacillus/genética , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Clonagem Molecular , Temperatura , Escherichia coli/genética , Xilanos/metabolismo , Xilanos/química , Especificidade por Substrato , Cinética
8.
Artigo em Inglês | MEDLINE | ID: mdl-38407242

RESUMO

A thermophilic, aerobic and heterotrophic filamentous bacterium, designated strain ZKZ2T, was isolated from a pipeline producing hydrothermal water originating from a >2.3 km deep subsurface geothermal source in Zharkent, Almaty region, Kazakhstan. The isolate was Gram-stain-positive, non-motile, heat-resistant and capable of producing a variety of extracellular hydrolases. Growth occurred at temperatures between 55 and 75 °C, with an optimum around 70 °C, and at pH values between 5.5 and 9.0, with an optimum at pH 7.0-7.5 with the formation of aerial mycelia; endospores were produced along the aerial mycelium. The isolate was able to utilize the following substrates for growth: glycerol, l-arabinose, ribose, d-xylose, d-glucose, d-fructose, d-mannose, rhamnose, d-mannitol, methyl-d-glucopyranoside, aesculin, salicin, cellobiose, maltose, melibiose, sucrose, trehalose, melezitose, raffinose, starch, turanose and 5-keto-gluconate. Furthermore, it was able to hydrolyse carboxymethylcellulose, starch, skimmed milk, Tween 60 and Tween 80. The major cellular fatty acids were iso-C15 : 0, iso-C17 : 0, iso-C16 : 0 and C16 : 0. Our 16S rRNA gene sequence analysis placed ZKZ2T within the genus Polycladomyces, family Thermoactinomycetaceae, with the highest similarity to the type species Polycladomyces abyssicola JIR-001T (99.18 % sequence identity). Our draft genome sequence analysis revealed a genome size of 3.3 Mbp with a G+C value of 52.5 mol%. The orthologous average nucleotide identity value as compared to that of its closest relative, P. abyssicola JIR-001T, was 90.23 %, with an in silico DNA-DNA hybridization value of 40.7 %, indicating that ZKZ2T represents a separate genome species. Based on the phenotypic and genome sequence differences from the other two Polycladomyces species, we propose that strain ZKZ2T represents a novel species, for which we propose the name Polycladomyces zharkentensis sp. nov. The type strain is ZKZ2T (=CECT 30708T=KCTC 43421T).


Assuntos
Celulose , Ácidos Graxos , Cazaquistão , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Firmicutes
9.
Artigo em Inglês | MEDLINE | ID: mdl-38478579

RESUMO

A novel aerobic methanotrophic bacterium, designated as strain IN45T, was isolated from in situ colonisation systems deployed at the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. IN45T was a moderately thermophilic obligate methanotroph that grew only on methane or methanol at temperatures between 25 and 56 °C (optimum 45-50 °C). It was an oval-shaped, Gram-reaction-negative, motile bacterium with a single polar flagellum and an intracytoplasmic membrane system. It required 1.5-4.0 % (w/v) NaCl (optimum 2-3 %) for growth. The major phospholipid fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1ω7c. The major isoprenoid quinone was Q-8. The 16S rRNA gene sequence comparison revealed 99.1 % sequence identity with Methylomarinovum caldicuralii IT-9T, the only species of the genus Methylomarinovum with a validly published name within the family Methylothermaceae. The complete genome sequence of IN45T consisted of a 2.42-Mbp chromosome (DNA G+C content, 64.1 mol%) and a 20.5-kbp plasmid. The genome encodes genes for particulate methane monooxygenase and two types of methanol dehydrogenase (mxaFI and xoxF). Genes involved in the ribulose monophosphate pathway for carbon assimilation are encoded, but the transaldolase gene was not found. The genome indicated that IN45T performs partial denitrification of nitrate to N2O, and its occurrence was indirectly confirmed by N2O production in cultures grown with nitrate. Genomic relatedness indices between the complete genome sequences of IN45T and M. caldicuralii IT-9T, such as digital DNA-DNA hybridisation (51.2 %), average nucleotide identity (92.94 %) and average amino acid identity (93.21 %), indicated that these two methanotrophs should be separated at the species level. On the basis of these results, strain IN45T represents a novel species, for which we propose the name Methylomarinovum tepidoasis sp. nov. with IN45T (=JCM 35101T =DSM 113422T) as the type strain.


Assuntos
Ácidos Graxos , Nitratos , Ácidos Graxos/química , Nitratos/metabolismo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
10.
Int Microbiol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249656

RESUMO

Thermophilic bacteria able to produce exopolysaccharides (EPSs) have become attractive in recent years. EPSs synthesized by thermophiles are worth investigating due to their unexplored structural and biological properties. In this study, EPSs from thermophilic, Gram-positive bacterial isolates were purified and tested for their biological activities. A total of one hundred seven thermophilic bacteria were screened for their ability to produce exopolysaccharides. Nine isolates belonging to Geobacillus, Parageobacillus, Aeribacillus, and Anoxybacillus genera with highest EPS production were chosen, and purified EPSs (20, 61, 74, 76, 78, 89, 106, 134, and 261) were used for biological activity studies. EPS yields of selected thermophilic bacteria ranged between 117 and 419 mg/L. Among the tested EPSs, 61, 106, and 261 showed antibacterial effect against E. faecalis JH2-2 at a final concentration of 1.5 mg/mL. EPS samples had significant antioxidant capacity, especially EPS 134, with the highest DPPH radical scavenging activity of 100% at a concentration of 5 mg/mL and the strongest reducing power. EPS 20 showed the highest lipid peroxidation inhibition effect at a rate of 31%. EPSs displayed weak alpha-amylase inhibition activity when compared with standard acarbose. The prebiotic indices of EPSs 20, 61, 76, 89, 134, and 261 were found to be higher than that of inulin, a representative prebiotic carbohydrate for all tested lactic acid bacteria in the study. All examined EPSs inhibited the biofilms formed by various bacteria depending on the test strain. Results indicated that thermophilic EPSs had remarkable antioxidant, prebiotic, and antibiofilm activities. Therefore, EPSs characterized in this study may have technological applications in health and food fields.

11.
Int Microbiol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129036

RESUMO

A new thermophilic strain, designated as Bacillus sp. LMB3902, was isolated from Hammam Debagh, the hottest spring in Algeria (up to 98 °C). This isolate showed high protease production in skim milk media at 55 °C and exhibited significant specific protease activity by using azocasein as a substrate (157.50 U/mg). Through conventional methods, chemotaxonomic characteristics, 16S rRNA gene sequencing, and comparative genomic analysis with the closely related strain Bacillus licheniformis DSM 13 (ATCC 14580 T), the isolate Bacillus sp. LMB3902 was identified as a potentially new strain of Bacillus licheniformis. In addition, the gene functions of Bacillus sp. LMB3902 strain were predicted using the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups, Non-Redundant Protein Sequence Database, Swiss-Prot, and Pfam databases. The results showed that the genome size of Bacillus sp. LMB3902 was 4.279.557 bp, with an average GC content of 46%. The genome contained 4.760 predicted genes, including 8 rRNAs, 78 tRNAs, and 24 sRNAs. A total of 235 protease genes were annotated including 50 proteases with transmembrane helix structures and eight secreted proteases with signal peptides. Additionally, the majority of secondary metabolites found by antiSMASH platform showed low similarity to identified natural products, such as fengicin (53%), lichenysin (57%), and surfactin (34%), suggesting that this strain may encode for novel uncharacterized natural products which can be useful for biotechnological applications. This study is the first report that describes the complete genome sequence, taxono-genomics, and gene annotation as well as protease production of the Bacillus genus in this hydrothermal vent.

12.
Extremophiles ; 28(2): 27, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861190

RESUMO

In this study, EPS production conditions of Geobacillus thermodenitrificans HBB 111, a thermophilic microorganism, were optimized and the amount of produced EPS (EPS 111) was found to be 44.0 mg/L. EPS 111 was purified using ion exchange chromatography and gel filtration chromatography, and a single type of exopolysaccharide was obtained. The structure of the purified EPS 111 was evaluated by TLC, FTIR, NMR, and GC-MS, and it was observed that it contained hexose (glucose, fructose, galactose and mannose) and pentose sugars. From the SEM photographs, it was understood that EPS 111 had an amorphous, rough, and layered structure. It was found that purified EPS 111 had low cytotoxicity (2.3%) and exhibited high antioxidant activity and remarkable antidiabetic, prebiotic and fibrinolytic activities. It is very valuable that the purified EPS 111 in this study offers multiple biological activities compared to the thermophilic EPSs reported in the literature and has a high potential for use in biotechnological and biomedical fields.


Assuntos
Geobacillus , Polissacarídeos Bacterianos , Geobacillus/metabolismo , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia
13.
Methods ; 218: 141-148, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604248

RESUMO

The demand for thermophilic protein has been increasing in protein engineering recently. Many machine-learning methods for identifying thermophilic proteins have emerged during this period. However, most machine learning-based thermophilic protein identification studies have only focused on accuracy. The relationship between the features' meaning and the proteins' physicochemical properties has yet to be studied in depth. In this article, we focused on the relationship between the features and the thermal stability of thermophilic proteins. This method used 2-D general series correlation pseudo amino acid (SC-PseAAC-General) features and realized accuracy of 82.76% using the J48 classifier. In addition, this research found the presence of higher frequencies of glutamic acid in thermophilic proteins, which help thermophilic proteins maintain their thermal stability by forming hydrogen bonds and salt bridges that prevent denaturation at high temperatures.


Assuntos
Aminoácidos , Aprendizado de Máquina , Ligação de Hidrogênio
14.
Environ Res ; 258: 119453, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909951

RESUMO

Thermophilic anaerobic digestion (AD) of animal manure offers various environmental benefits but the process requires a microbial community acclimatized to high ammonia. In current study, a lab-scale continuous stirred tank reactor (CSTR) fed with chicken manure was operated under thermophilic condition for 450 days in total. Results showed that the volumetric methane production decreased from 445 to 328 and sharply declined to 153 mL L-1·d-1 with feeding total solid (TS) step increased from 5% to 7.5% and 10%, respectively. While, after a long-term stop feeding for 80 days, highly disturbed reactor was able to recover methane generation to 739 mL L-1·d-1 at feeding TS of 10%. Isotope analysis indicted acetate converted to methane through the syntrophic acetate oxidation and hydrogenotrophic methanogenesis (SAO-HM) pathway increased from 33% to 63% as the concentration of ammonium increased from 2493 to 6258 mg L-1. Significant different in the genome expression of the SAO bacterial from 0.09% to 1.23%, combining with main hydrogenotrophic partners (Methanoculleus spp. and Methanothermobacter spp.) contented of 2.1% and 99.9% during inhibitory and recovery stages, respectively. The highly expressed KEGG pathway in level 3 (enzyme genes) for the Recovery sludge combining with the extraordinary high abundance of genera Halocella sp. suggested that Halocella sp. might be a highly efficient hydrolytic and acidogenic microorganism and enhance the process of SAO during carbon metabolic flow to methane. This report will be a basis for further study of AD studies on high nitrogen content of poultry manure.


Assuntos
Amônia , Reatores Biológicos , Galinhas , Esterco , Metano , Esterco/microbiologia , Animais , Anaerobiose , Metano/metabolismo , Amônia/metabolismo , Reatores Biológicos/microbiologia , Metagenômica/métodos
15.
Appl Microbiol Biotechnol ; 108(1): 270, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512481

RESUMO

Thermophilic cyanobacteria are prokaryotic photoautotrophic microorganisms capable of growth between 45 and 73 °C. They are typically found in hot springs where they serve as essential primary producers. Several key features make these robust photosynthetic microbes biotechnologically relevant. These are highly stable proteins and their complexes, the ability to actively transport and concentrate inorganic carbon and other nutrients, to serve as gene donors, microbial cell factories, and sources of bioactive metabolites. A thorough investigation of the recent progress in thermophilic cyanobacteria reveals a significant increase in the number of newly isolated and delineated organisms and wide application of thermophilic light-harvesting components in biohybrid devices. Yet despite these achievements, there are still deficiencies at the high-end of the biotechnological learning curve, notably in genetic engineering and gene editing. Thermostable proteins could be more widely employed, and an extensive pool of newly available genetic data could be better utilised. In this manuscript, we attempt to showcase the most important recent advances in thermophilic cyanobacterial biotechnology and provide an overview of the future direction of the field and challenges that need to be overcome before thermophilic cyanobacterial biotechnology can bridge the gap with highly advanced biotechnology of their mesophilic counterparts. KEY POINTS: • Increased interest in all aspects of thermophilic cyanobacteria in recent years • Light harvesting components remain the most biotechnologically relevant • Lack of reliable molecular biology tools hinders further development of the chassis.


Assuntos
Biotecnologia , Cianobactérias , Cianobactérias/genética , Cianobactérias/metabolismo , Engenharia Genética , Edição de Genes , Fotossíntese
16.
Antonie Van Leeuwenhoek ; 117(1): 85, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811466

RESUMO

Kars Kashar cheese is an artisanal pasta-filata type cheese and geographically marked in Eastern Anatolia of Turkey. The aims of this research were to determine for the first time thermophilic lactic acid bacteria (LAB) of Kars Kashar cheese and characterize the technological properties of obtained isolates. In our research, a number of 15 samples of whey were collected from the different villages in Kars. These samples were incubated at 45 °C and used as the source material for isolating thermophilic LAB. A total of 250 colonies were isolated from thermophilic whey, and 217 of them were determined to be presumptive LAB based on their Gram staining and catalase test. A total of 170 isolates were characterized by their phenotypic properties and identified using the MALDI-TOF mass spectrometry method. Phenotypic identification of isolates displayed that Enterococcus and Lactobacillus were the predominant microbiota. According to MALDI-TOF MS identification, 89 isolates were identified as Enterococcus (52.35%), 57 isolates as Lactobacillus (33.53%), 23 isolates as Streptococcus (13.53%), and one isolate as Lactococcus (0.59%). All thermophilic LAB isolates were successfully identified to the species level and it has been observed that MALDI-TOF MS can be successfully used for the identification of selected LAB. The acidification and proteolytic activities of the isolated thermophilic LAB were examined, and the isolates designated for use as starter cultures were also genotypically defined.


Assuntos
Queijo , Lactobacillales , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Queijo/microbiologia , Lactobacillales/isolamento & purificação , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/metabolismo , Soro do Leite/microbiologia , Soro do Leite/química , Microbiologia de Alimentos , Turquia , Lactobacillus/isolamento & purificação , Lactobacillus/genética , Lactobacillus/classificação , Lactobacillus/metabolismo , Enterococcus/isolamento & purificação , Enterococcus/classificação , Enterococcus/genética , Enterococcus/metabolismo
17.
Plant Cell Rep ; 43(8): 202, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073636

RESUMO

KEY MESSAGE: E1 holoenzyme was extensively Hyp-O-glycosylated at the proline rich linker region in plants, which substantially increased the molecular size and improved the enzymatic digestibility of the biomass of transgenic plants. Thermophilic E1 endo-1,4-ß-glucanase derived from Acidothermus cellulolyticus has been frequently expressed in planta to reconstruct the plant cell wall to overcome biomass recalcitrance. However, the expressed holoenzyme exhibited a larger molecular size (~ 100 kDa) than the theoretical one (57 kDa), possibly due to posttranslational modifications in the recombinant enzyme within plant cells. This study investigates the glycosylation of the E1 holoenzyme expressed in tobacco plants and determines its impact on enzyme activity and biomass digestibility. The E1 holoenzyme, E1 catalytic domain (E1cd) and E1 linker (E1Lk) were each expressed in tobacco plants and suspension cells. The accumulation of holoenzyme was 2.0- to 2.3- times higher than that of E1cd. The proline-rich E1Lk region was extensively hydroxyproline-O-glycosylated with arabinogalactan polysaccharides. Compared with E1cd, the holoenzyme displayed a broader optimal temperature range (70 to 85 ºC). When grown in greenhouse, the expression of E1 holoenzyme induced notable phenotypic changes in plants, including delayed flowering and leaf variegation post-flowering. However, the final yield of plant biomass was not significantly affected. Finally, plant biomass engineering with E1 holoenzyme showed 1.7- to 1.8-fold higher saccharification efficiency than the E1cd lines and 2.4- to 2.7-fold higher than the wild-type lines, which was ascribed to the synergetic action of the E1Lk and cellulose binding module in reducing cell wall recalcitrance.


Assuntos
Biomassa , Celulase , Hidroxiprolina , Nicotiana , Plantas Geneticamente Modificadas , Glicosilação , Celulase/metabolismo , Celulase/genética , Nicotiana/genética , Nicotiana/metabolismo , Hidroxiprolina/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Caldicellulosiruptor/genética , Caldicellulosiruptor/metabolismo
18.
Biodegradation ; 35(2): 195-208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37639168

RESUMO

The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H2S) as a byproduct. This study examined the capability of a consortium consisting of Sulfobacillus thermosulfidooxidans and Sulfobacillus acidophilus to partially oxidize H2S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor's steady state, despite high flow rates. Afterward, the electron donor was changed to H2S. When the bioreactor was operated continuously and with high aeration, H2S was fully oxidized to SO42-. However, under conditions of low aeration and at a concentration of 0.26 g/L of H2S, the consortium was able to oxidize H2S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H2S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H2S. The findings highlight the capability of a Sulfobacillus consortium to convert H2S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.


Assuntos
Sulfeto de Hidrogênio , Sulfatos , Reatores Biológicos/microbiologia , Enxofre , Bactérias , Oxirredução
19.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396678

RESUMO

The dynamic structures and varying functions of intrinsically disordered proteins (IDPs) have made them fascinating subjects in molecular biology. Investigating IDP abundance in different bacterial species is crucial for understanding adaptive strategies in diverse environments. Notably, thermophilic bacteria have lower IDP abundance than mesophiles, and a negative correlation with optimal growth temperature (OGT) has been observed. However, the factors driving these trends are yet to be fully understood. We examined the types of IDPs present in both mesophiles and thermophiles alongside those unique to just mesophiles. The shared group of IDPs exhibits similar disorder levels in the two groups of species, suggesting that certain IDPs unique to mesophiles may contribute to the observed decrease in IDP abundance as OGT increases. Subsequently, we used quasi-independent contrasts to explore the relationship between OGT and IDP abundance evolution. Interestingly, we found no significant relationship between OGT and IDP abundance contrasts, suggesting that the evolution of lower IDP abundance in thermophiles may not be solely linked to OGT. This study provides a foundation for future research into the intricate relationship between IDP evolution and environmental adaptation. Our findings support further research on the adaptive significance of intrinsic disorder in bacterial species.


Assuntos
Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas Intrinsicamente Desordenadas/química , Temperatura , Bactérias/genética , Bactérias/metabolismo , Conformação Proteica
20.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542111

RESUMO

Viruses are nonliving biological entities whose host range encompasses all known forms of life. They are deceptively simple in description (a protein shell surrounding genetic material with an occasional lipid envelope) and yet can infect all known forms of life. Recently, due to technological advancements, viruses from more extreme environments can be studied through both culture-dependent and independent means. Viruses with thermophilic, halophilic, psychrophilic, and barophilic properties are highlighted in this paper with an emphasis on the properties that allow them to exist in said environments. Unfortunately, much of this field is extremely novel and thus, not much is yet known about these viruses or the microbes they infect when compared to non-extremophilic host-virus systems. With this review, we hope to shed some light on these relatively new studies and highlight their intrinsic value.


Assuntos
Vírus , Vírus/genética , Ambientes Extremos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA