Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 43(18): e2200208, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809256

RESUMO

Cellulose as the most abundant biopolymers on Earth, presents appealing performance in mechanical properties, thermal management, and versatile functionalization. Developing fabrication methods to design functional materials and open new application areas. However, cellulose is hard to be dissolved or melt due to its recalcitrant property. Herein, the recent progress of fabricating cellulose is summarized. First, the unique hierarchical structure of cellulose is fully investigated and the resulted processability is analysed in directions of down to nanocellulose, dissolution, and thermoplastic processing. Then, the reported fabrication methods are summarized in three aspects: (1) self-assembly from nano/micro cellulose suspensions, especially the formation of cellulose nanocrystals; (2) dissolution-regeneration-drying, covering spinning and solvent infusion processing; and (3) thermoplastic processing, focusing on the setup and the morphology changes of the prepared products. In each aspect, the flowchart of the fabrication method, the mechanism, fabricated products, and effects of processing parameters are explored. Finally, this review provides a perspective on the further direction of fabricating cellulose, especially the challenges toward mass production.


Assuntos
Celulose , Nanopartículas , Celulose/química , Nanopartículas/química , Solventes , Suspensões
2.
Crit Rev Food Sci Nutr ; 58(3): 475-485, 2018 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-27379431

RESUMO

Interest increased recently in manufacturing food packaging, such as films and coatings, from protein-based biopolymers. Among various protein sources, canola protein is a novel source for manufacturing polymer films. It can be concentrated or isolated by aqueous extraction technology followed by protein precipitation. Using this procedure, it was claimed that more than 99% of protein was extracted from the defatted canola meal, and protein recovery was 87.5%. Canola protein exhibits thermoplastic properties when plasticizers are present, including water, glycerol, polyethylene glycol, and sorbitol. Addition of these plasticizers allows the canola protein to undergo glass transition and facilitates deformation and processability. Normally, canola protein-based bioplastics showed low mechanical properties, which had tensile strength (TS) of 1.19 to 4.31 MPa. So, various factors were explored to improve it, including blending with synthetic polymers, modifying protein functionality through controlled denaturation, and adding cross-linking agents. Canola protein-based bioplastics were reported to have glass transition temperature, Tg, below -50°C but it highly depends on the plasticizer content. Canola protein-based bioplastics have demonstrated comparable mechanical and moisture barrier properties compared with other plant protein-based bioplastics. They have great potential in food packaging applications, including their use as wraps, sacks, sachets, or pouches.


Assuntos
Plásticos Biodegradáveis , Brassica rapa/química , Embalagem de Alimentos , Proteínas de Plantas/química , Biopolímeros , Plastificantes
3.
Polymers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365591

RESUMO

The goal of producing polyetheretherketone/polyetherimide (PEEK/PEI) blends is to combine the outstanding properties that both polymers present separately. Despite being miscible polymers, it is possible to achieve PEEK/PEI multilayered blends in which PEEK crystallinity is not significantly inhibited, as opposed to conventional extruding processes that lead to homogeneous mixtures with total polymer chain interpenetration. This study investigated a 50/50 (volume fraction) PEEK/PEI multilayered polymer blend in which manufacturing parameters were tailored to simultaneously achieve PEEK-PEI adhesion while keeping PEEK crystallinity in order to optimize the mechanical properties of this heterogeneous polymer blend. The interface adhesion was characterized with the use of three-point bending tests, which proved that a processing temperature below the melting point of PEEK produced weak PEEK-PEI interfaces. Results from differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and X-ray diffraction analysis (XRD) showed that under a 350 °C consolidation temperature, there is a partial mixing of PEEK and PEI layers in the interface that provides good adhesion. The thickness of the mixed homogeneous region at this temperature exhibits reduced sensitivity to processing time, which ensures that both polymers essentially remain separate phases. This also entails that multilayered blends with good mechanical properties can be reliably produced with short manufacturing cycles. The combination of mechanical performance and potential joining capability supports their use in a wide range of applications in the automotive, marine, and aerospace industries.

4.
Polymers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809428

RESUMO

This study investigates antibacterial polymer composites based on polypropylene as modified by caraway essential oil at various concentrations, the latter immobilized on a talc. The caraway essential oil is incorporated in the polypropylene by a thermoplastic processing method. Analysis of the morphology of the composites was carried out by scanning electron microscopy. The chemical composition of the caraway essential oil in addition to its efficiency of incorporation and release were evaluated by GC/MS and Pyrolysis-GC/MS techniques, respectively. Determination was made as to the influence of such incorporation on thermal and tensile properties of the samples, while antibacterial activity was evaluated through conducting disk diffusion tests and measurement with adherence to the ISO 22196:2011 standard. It was found that incorporating the caraway essential oil in the samples did not affect the homogeneity of the thermoplastic-processed composites at any studied concentration. Stress-strain analysis confirmed the plasticizing effect of the essential oil in the polypropylene matrix, in addition to which, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) analysis revealed that the prepared compositions with essential oil exhibited similar thermal properties to neat polypropylene. Results indicated significant antibacterial activity against Staphylococcus aureus and Escherichia coli at the concentration of essential oil of 4.9 ± 0.2 wt% and higher.

5.
Materials (Basel) ; 14(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683518

RESUMO

Piezoelectric composites with 3-3 connectivity gathered attraction due to their potential application as an acoustic transducer in medical imaging, non-destructive testing, etc. In this contribution, piezoelectric composites were fabricated with a material extrusion-based additive manufacturing process (MEX), also well-known under the names fused deposition modeling (FDM), fused filament fabrication (FFF) or fused deposition ceramics (FDC). Thermoplastic filaments were used to achieve open and offset printed piezoelectric scaffold structures. Both scaffold structures were printed, debinded and sintered successfully using commercial PZT and BaTiO3 powder. For the first time, it could be demonstrated, that using the MEX processing method, closed pore ferroelectric structure can be achieved without pore-former additive. After ceramic processing, the PZT scaffold structures were impregnated with epoxy resin to convert them into composites with 3-3 connectivity. A series of composites with varying ceramic content were achieved by changing the infill parameter during the 3D printing process systematically, and their electromechanical properties were investigated using the electromechanical aix PES device. Also, the Figure of merit (FOM) of these composites was calculated to assess the potential of this material as a candidate for transducer applications. A maximum for the FOM at 25 vol.% of PZT could be observed in this study.

6.
Int J Biol Macromol ; 161: 177-186, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32470582

RESUMO

Cellulose is an abundant feedstock with renewability and biodegradability. However, it is still challenging to manufacture natural cellulose products by environmentally friendly thermoplastic processing methods. Herein, we proposed a green approach for the heterogeneous preparation of thermoplastic cellulose grafted polyurethane (RCP-g-PU) from amorphous regenerated cellulose paste (RCP) via hydroxyl/isocyanate chemistry. First, amorphous RCP was fabricated through dissolving cellulose in sodium hydroxide aqueous solution and regenerating in polyethylene glycol, resulting in the enhancement of the accessibility of hydroxy groups in cellulose chains. Subsequently, a series of thermoplastic RCP-g-PU with the melt flow temperatures ranging from 160 °C to 226 °C were feasibly synthesized by adding hexamethylene diisocyanate into RCP without using other organic solvents. Eventually, the resultant RCP-g-PU can be directly hot-pressed into transparent films with flexibility and foldability. The reported methodology represents a sustainable route to achieve thermoplastic cellulose derivatives.


Assuntos
Celulose/química , Poliuretanos/química , Fenômenos Químicos , Espectroscopia de Ressonância Magnética , Fenômenos Mecânicos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria
7.
Materials (Basel) ; 13(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033305

RESUMO

This paper presents the results of research with regard to determining the conditions of the thermoplastic processing of steel wire rod for cold upsetting, which ensures that a finished product with an even and fine-grained microstructure, without a clear banding and with increased cold deformability is obtained. The material used for the studies was 20MnB4 low carbon steel, and the studies were carried out on wire rod with a final diameter of 5.5 mm. Numerical modelling of the analysed process was carried out using commercial FORGE 2011® and QTSteel® programs, based on the finite element method. The GLEEBLE 3800® metallurgical process simulator was used for the physical modelling studies. The obtained theoretical and experimental results were then verified in industrial conditions. Based on the obtained results, it was found that the optimum strip temperature before deformation in the RSM finishing block of the rolling mill is about 850 °C. The best cooling variant after the deformation process was the one in which the cooling rate was 10 °C/s. Such parameters of thermoplastic processing ensure that a final product with a favourable complex of mechanical and technological properties as well as a fine-grained, even microstructure, lacking clear banding, is obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA