Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(4): e202215722, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36456527

RESUMO

Thermally induced reversible up/down migration of poly(ionic liquid)s (PILs) in aqueous two-phase systems (ATPSs) was achieved for the first time in this study. Novel ATPSs were fabricated using azobenzene (Azo)- and benzyl (Bn)-modified PILs, and their upper and lower phases could be easily tuned using the grafting degree (GD) of the Azo and Bn groups. Bn-PIL with higher GDBn could go up into the upper phase and Azo-PIL come down to the lower phase when the temperature increased (>65 °C); this behavior was reversed at lower temperatures. Moreover, a reversible two-phase/single-phase transition was realized under UV irradiation. Experimental and simulation results revealed that the difference in the hydration capacity between Bn-PIL and Azo-PIL accounted for their unique phase-separation behavior. A versatile platform for fabricating ATPSs with tunable stimuli-responsive behavior can be realized based on our findings, which can broaden their applications in the fields of smart separation systems and functional material development.

2.
Macromol Rapid Commun ; 38(9)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28240394

RESUMO

Thermoresponsive linear polymers and their corresponding aggregates or nanogels typically show similar thermoresponsive profiles. In this study, the authors demonstrate reversible chemical switching between linear polymers and their cross-linked nanogels. The linear polymers exhibit sharp thermal transitions typical of common thermoresponsive polymers but the cross-linked nanogels exhibit "linear" thermal transitions over a relatively broad temperature range. The reversible switching between these two different polymer architectures with distinct thermoresponses represents a unique example of how the responsive properties of smart polymers can be significantly manipulated via polymer architecture engineering.


Assuntos
Polímeros/química , Temperatura , Engenharia Química , Nanogéis , Polietilenoglicóis/química , Polietilenoimina/química
3.
Angew Chem Int Ed Engl ; 55(28): 7934-8, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27187750

RESUMO

The separation and recycling of catalyst and cocatalyst from the products and solvents are of critical importance. In this work, a class of functionalized ionic liquids (ILs) were designed and synthesized, and by tuning the hydrophilicity and hydrophobicity of cation and anion, respectively, these ILs could reversibly transfer between water and organics triggered upon undergoing a temperature change. From a combination of multiple spectroscopic techniques, it was shown that the driving force behind the transfer was originated from a change in conformation of the PEG chain of the IL upon temperature variation. By utilizing the novel property of this class of ILs, a highly efficient and controllable CuI-catalyzed cycloaddition reaction was achieved wherein the IL was used to entrain, activate, and recycle the catalyst, as well as to control the reaction.

4.
J Sep Sci ; 38(2): 339-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376697

RESUMO

The polydimethylsiloxane microfluidic chip grafted with poly(N-isopropylacrylamide-3-acrylamidephenylboronic acid) (P(NIPAAm-co-AAPBA)) was fabricated by UV-induced grafting polymerization for the capture-release of cis-diol-containing biomolecules by temperature-modulated changes instead of changing the pH value of the mobile phase. Based on the optimal time for benzophenone soaking and UV irradiation of grafting polymerization, P(NIPAAm-co-AAPBA) was successfully grafted on the polydimethylsiloxane substrates, which were characterized by scanning electron microscopy, water contact angle measurements, and Fourier transform infrared spectroscopy. The P(NIPAAm-co-AAPBA)-grafted polydimethylsiloxane microfluidic chip can be successfully used for the capture and release of cis-diol-containing adenosine by adjusting the temperature from 4 to 55°C, and the result was validated by Triple Quad liquid chromatography with mass spectrometry. With further development, the fabricated polydimethylsiloxane microfluidic chips might be chosen as a potential tool for the capture and release of cis-diol-containing macromolecules, such as horseradish peroxidase and glycoprotein.


Assuntos
Ácidos Borônicos/química , Técnicas Analíticas Microfluídicas/instrumentação , Dimetilpolisiloxanos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
5.
Molecules ; 20(9): 17378-92, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393567

RESUMO

In this study, thermo-responsive polymeric nanogels were facilely prepared via one-step cross-linking copolymerization of ethylene glycol dimethacrylate/divinylbenzene and ionic liquid (IL)-based monomers, 1,n-dialkyl-3,3'-bis-1-vinyl imidazolium bromides ([CnVIm]Br; n = 6, 8, 12) in selective solvents. The results revealed that stable and blue opalescent biimidazolium (BIm)-based nanogel solutions could be obtained without any precipitation when the copolymerizations were conducted in methanol. Most importantly, these novel nanogels were thermo-response, and could reversibly transform to precipitation in methanol with temperature changes. Turbidity analysis and dynamic light scatting (DLS) measurement illustrated that PIL-based nanogel solutions presented the phase transform with upper critical solution temperature (UCST) in the range of 5-25 °C. The nanogels were characterized using Fourier transform infrared (FTIR), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). In addition, BIm-based nanogels could also be used as highly active catalysts in the cycloaddition reaction of CO2 and epoxides. As a result, our attributes build a robust platform suitable for the preparation of polymeric nanomaterials, as well as CO2 conversion.


Assuntos
Imidazóis/síntese química , Polietilenoglicóis/síntese química , Polietilenoimina/síntese química , Reagentes de Ligações Cruzadas , Imidazóis/química , Líquidos Iônicos/química , Nanogéis , Polietilenoglicóis/química , Polietilenoimina/química , Polimerização , Temperatura
6.
Carbohydr Polym ; 278: 118943, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973761

RESUMO

The purpose of this study is to develop a hydrogel with temperature and redox response to control drug delivery. However, the strength of temperature sensitive N-isopropylacrylamide (NIPAM) hydrogel is weak. Therefore, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofiber (CNF) is introduced to improve this problem. The compressive strength of hydrogels increased by 360% after CNF addition. Meanwhile, N,N'-bis(acryloyl)cystamine (BACy) is introduced into the hydrogels as a cross-linker, imparting redox responsive properties to the hydrogels. Tumor therapeutic drugs are used as model drugs for in vitro release studies. The drug release rate of hydrogel is regulated by temperature and reducing environment. The maximum cumulative release rate of doxorubicin (DOX) is 39.56%, and the Berberine (BBR) is 99.50% after 60 h. The swelling and transparency of hydrogels showed dramatic changes in the range of 30-40 °C. Cytotoxicity experiments demonstrated that the hydrogel had almost no cytotoxicity.


Assuntos
Antibióticos Antineoplásicos/química , Celulose/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Nanofibras/química , Temperatura , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
7.
ACS Nano ; 15(1): 1785-1794, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33404217

RESUMO

Mussel-inspired conductive hydrogels are attractive for the development of next-generation self-adhesive, flexible skinlike sensors. However, despite extensive progress, there are still some daunting challenges that hinder their applications, such as inferior optical transparency, low catechol content (e.g., poor adhesion), as well as limited sensation performances. Here, we report a dopamine-triggered gelation (DTG) strategy for fabricating mussel-inspired, transparent, and conductive hydrogels. The DTG design leverages on the dual functions of dopamine, which serves as both polymerization initiator and dynamic mediator to elaborate and orchestrate the cross-linking networks of hydrogels, allowing for pronounced adhesion, robust elasticity, self-healing ability, excellent injectability and three-dimensional printability, reversible and tunable transparent-opaque transition, and thermoresponsive feature. These preferable performances enable DTG hydrogels as self-adhesive, flexible skinlike sensors for achieving multiple sensations toward pressure, strain, and temperature, even an extraordinary visual perception effect, making it a step closer in the exploration of future biomimetic skin.


Assuntos
Dopamina , Hidrogéis , Adesivos , Condutividade Elétrica , Pele
8.
Chem Asian J ; 14(9): 1404-1408, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30844121

RESUMO

Artificial intelligence sensations have aroused scientific interest from electronic conductors to bio-inspired ionic conductors. The conductivity of electrons decreases with increasing temperature, while the ionic conductivity agrees with an Arrhenius equation or a modified Vogel-Tammann-Fulcher (VTF) equation. Herein, thermo-responsive poly(N-isopropyl amide) (PNIPAm) and single-ion-conducting poly(2-acrylamido-2-methyl-1-propanesulfonic lithium salt) (PAMPSLi) were copolymerized via a facile radical polymerization to demonstrate a very intriguing anti-Arrhenius ionic conductivity behaviour during thermally induced volume-phase transition. These smart hydrogels presented very promising scaffolds for architecting flexible, wearable or advanced functional ionic devices.

9.
Polymers (Basel) ; 11(3)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30960473

RESUMO

Self-healing hydrogels have drawngreat attention in the past decade since the self-healing property is one of the characteristics of living creatures. In this study, poly(acrylamide-stat-diacetone acrylamide) P(AM-stat-DAA) with a pendant ketone group was synthesized from easy accessible monomers, and thermo-responsive self-healing hydrogels were prepared through a series of diacylhydrazide compounds cross-linking without any additional stimulus. Although the copolymers do not show thermo-response, the hydrogels became thermo-responsive andboth the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) varied with the composition of the copolymer and structure of cross-linkers. With a dynamic covalent bond connection, the hydrogel showed gel-sol-gel transition triggered by acidity, redox, and ketone to acylhydrazide group ratios. This is another interesting cross-linking induced thermo-responsive (CIT) hydrogel with different properties compared to PNIPAM-based thermo-responsive hydrogels. The self-healing hydrogel with CIT properties could have great potential for application in areas related to bioscience, life simulation, and temperature switching.

10.
Colloids Surf B Biointerfaces ; 183: 110441, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445357

RESUMO

With increasing attention paid to smart materials, self-healing hydrogels with thermo-responses have been greatly developed in the past several years. At the same time, fluorescent or light emitting polymers have been studied for use as bioimaging tools and drug delivery vehicles. In this research, thermo-responsive self-healing hydrogels with aggregation-induced emission (AIE) property were prepared from tetraphenylethylene (TPE) containing TPE-poly(N,N-dimethylacrylamide-stat-Diacetone acrylamide) [TPE-P(DMA-stat-DAA)] cross-linked by diacylhydrazide. In addition to self-healing based on reversible acylhydrazone bond, the copolymer and hydrogels showed thermo-responses. The lower critical solution temperature (LCST) of the hydrogels was regulated to body temperature. Based on the AIE property of the TPE unit, the hydrogels showed an enhanced light emitting property above the LCST, which was regulated by temperature change. The in vitro cytotoxicity experiment showed that the hydrogels are not toxic, and the DOX release rate can be enhanced by low pH values, which endowed this kind of thermo-responsive light emitting hydrogel with great potential for applications in bio-diagnosis, drug delivery, artificial organs with light sensitive detection, etc.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Luminescência , Temperatura , Acrilamida/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Reagentes de Ligações Cruzadas/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Humanos , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Estilbenos/química
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 128-131, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30622038

RESUMO

In this present work, we have developed a temperature sensitive ICT probe (KNP) to investigate alternation of ICT process with the temperature in polar protic solvents. The H-bonding interaction is found to play a key role on solute-solvent interaction to become a temperature sensitive ICT probe in solution. From temperature dependent UV-Vis spectra, it is cleared that the solute-solvent interaction is reversible in nature with temperature and affected by concentration in polar protic solvents. The reversible solute-solvent interaction is observed by monitoring the intensity variation of intramolecular charge transfer (ICT) band with temperature in solution.

12.
Polymers (Basel) ; 10(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30961184

RESUMO

Novel multifunctional fluorescent chemosensors composed of electrospun (ES) nanofibers with high sensitivity toward pH, mercury ions (Hg2+), and temperature were prepared from poly(N-Isopropylacrylamide-co-N-methylolacrylamide-co-rhodamine derivative) (poly(NIPAAm-co-NMA-co-RhBN2AM)) by employing an electrospinning process. NIPAAm and NMA moieties provide hydrophilic and thermo-responsive properties (absorption of Hg2+ in aqueous solutions), and chemical cross-linking sites (stabilization of the fibrous structure in aqueous solutions), respectively. The fluorescent probe, RhBN2AM is highly sensitive toward pH and Hg2+. The synthesis of poly(NIPAAm-co-NMA-co-RhBN2AM) with different compositions was carried on via free-radical polymerization. ES nanofibers prepared from sensory copolymers with a 71.1:28.4:0.5 NIPAAm:NMA:RhBN2AM ratio (P3 ES nanofibers) exhibited significant color change from non-fluorescent to red fluorescence while sensing pH (the λPL, max exhibited a 4.8-fold enhancement) or Hg2+ (at a constant Hg2+ concentration (10-3 M), the λPL, max of P3-fibers exhibited 4.7-fold enhancement), and high reversibility of on/off switchable fluorescence emission at least five times when Hg2+ and ethylenediaminetetraacetic acid (EDTA) were sequentially added. The P3 ES nanofibrous membranes had a higher surface-to-volume ratio to enhance their performance than did the corresponding thin films. In addition, the fluorescence emission of P3 ES nanofibrous membranes exhibited second enhancement above the lower critical solution temperature. Thus, the ES nanofibrous membranes prepared from P3 with on/off switchable capacity and thermo-responsive characteristics can be used as a multifunctional sensory device for specific heavy transition metal (HTM) in aqueous solutions.

13.
ACS Appl Mater Interfaces ; 10(38): 32747-32759, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30157634

RESUMO

Poly( N-isopropylacrylamide) (PNIPAAm), a typical thermoresponsive polymer, exhibits potential application in smart materials. However, bulk PNIPAAm hydrogel monoliths undergo slow volume phase transition at least tens of minutes to hours as determined by the shape and size of polymers due to the formation of the skin layer. In this regard, novel macroporous sponges with rapid thermoresponse are prepared via grafting polymerization of N-isopropylacrylamide (NIPAAm) onto the macroporous poly(vinyl alcohol) formaldehyde (PVF) network as confirmed by attenuated total reflection-infrared (ATR IR) and 1H NMR spectra. As prepared PVF- g-PNIPAAm sponges display interconnected open-cell structures, and their average pore sizes and porosities are ∼90 µm and >85%, respectively. The equilibrium swelling ratio of PVF- g-PNIPAAm sponges varies from 11 to 50 with temperature. The volume phase transition temperature is at 30-34 °C, as detected in the DSC curves of swollen samples. These features indicate that the existence of the original PVF network exerts almost no influence on the PNIPAAm temperature responsibility. As prepared samples can reach the swelling equilibrium in less than 80 s, and their rapid swelling kinetics can be fitted using the pseudo-first-order rate kinetic equation. Notably, the samples also display rapid deswelling rate in less than 40 s at relative high temperature (48 °C), thereby indicating a superfast responsive behavior to temperature change. The PVF- g-PNIPAAm sponges exhibit rapid and reversible thermoresponse in repeatable swelling-deswelling cycles, which can satisfy the need of special smart materials. In particular, combined with iodine solution (i.e., PVF- g-PNIPAAm/I2), these sponges can serve as a novel temperature indicator and exhibit excellent antibacterial performances.


Assuntos
Acrilamidas/química , Materiais Biocompatíveis/química , Formaldeído/química , Hidrogéis/química , Temperatura , Polímeros/química , Álcool de Polivinil/química
14.
ACS Biomater Sci Eng ; 3(12): 3141-3145, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445357

RESUMO

The inactivation of multimeric enzymes is a more complicated process compared with that of monomeric enzymes. Stabilization of multimeric enzymes is regarded as a challenge with practical values in enzyme technology. Temperature-sensitive copolymer chitosan-graft- poly(N-isopropylacrylamide) was synthesized and encapsulated with multimeric enzymes in the confined spaces constructed by the W/O microemulsion. In this way, the quaternary structures of multimeric enzymes are stabilized and the thermal stabilities of them are enhanced. The whole process was studied and discussed. This method, which works well for both glucose oxidase and catalase, can be developed as a general protection strategy for multimeric enzymes.

15.
ACS Appl Mater Interfaces ; 9(38): 32930-32938, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28849649

RESUMO

Thermal-sensitive materials, such as metallosupramolecular polymers, have been integrated into devices for a broad range of applications. However, the role of these materials is limited to temperature sensing and the lack of a memory function. Herein, we present novel [PolyCo-L1xL2y-PF6]-based organic resistive memories (ORMs) possessing both a thermal response and ternary memory behavior with three electrical resistance states [high (HRS), intermediate (IRS), and low (LRS)]. Furthermore, the thermal behavior can be memorized by the Al/[PolyCoL1xL2y-PF6]/indium-tin oxide devices. Heating and cooling the devices at a LRS results in a switch from the LRS to a HRS and further to a LRS, indicating that the thermal behavior can be efficiently memorized. Following the heating and cooling process, devices at a HRS retain their ternary memory behavior, while an unstable resistance variation behavior is observed at the IRS. We propose a possible mechanism for the thermoresponsive memory behavior, and this finding provides a guide for the design of future thermoresponsive ORMs.

16.
Enzyme Microb Technol ; 87-88: 44-51, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27178794

RESUMO

Microbial transglutaminase (mTG) is widely utilized in the PEGylation of pharmaceutical proteins. mTG immobilization can be achieved via covalent bonding on solid supports. However, the catalytic efficiency of mTG immobilized on solid supports was significantly reduced by mass transfer limitation. To overcome this limitation, mTG was covalently immobilized on the thermo-responsive carboxylated poly(N-isopropylacrylamide) (pNIPAM). The pNIPAM-mTG conjugate exhibited reversibly solubility in aqueous solution with a low critical solution temperature (LCST) at 39°C, i.e., it was insoluble above 39°C and soluble below 39°C. The pH dependence of the pNIPAM-mTG conjugate was similar with that of the native mTG. Upon conjugation to pNIPAM, the optimal temperature of mTG shifted down from 50-55°C to 40-45°C, and the thermal stability of the conjugate was elevated. The easy separation of the pNIPAM-mTG conjugate with its substrate and the catalytic efficiency of the pNIPAM-mTG conjugate were demonstrated by employing the pNIPAM-mTG conjugate to cross-link bovine serum albumin (BSA) and catalyze PEGylation of therapeutic protein, cytochrome c (Cyt C), respectively. The thermo-responsive mTG is suitable to modify proteins in food processing and biomedical engineering.


Assuntos
Resinas Acrílicas , Enzimas Imobilizadas/metabolismo , Transglutaminases/metabolismo , Resinas Acrílicas/química , Animais , Bovinos , Reagentes de Ligações Cruzadas , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Soroalbumina Bovina , Streptomyces/enzimologia , Temperatura
17.
Mater Sci Eng C Mater Biol Appl ; 62: 45-52, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952396

RESUMO

A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the "grafting from" approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL(-1). These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5°C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Resinas Acrílicas/química , Sobrevivência Celular , Cromatografia em Gel , Doxorrubicina/química , Doxorrubicina/metabolismo , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Espectroscopia de Ressonância Magnética , Micelas , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência
18.
J Biomater Sci Polym Ed ; 23(10): 1301-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21722425

RESUMO

Thermoresponsive poly(benzyl methacrylate)-b-poly(N-isopropylacrylamide) (PBzMA-b-PIPAAm) block co-polymer brush surfaces were prepared by surface-initiated two-step reversible addition-fragmentation chain transfer radical (RAFT) polymerization. PBzMA brushes were fabricated on azoinitiator-immobilized glass substrates in the presence of dithiobenzoate (DTB) compound as a RAFT agent. The amount of grafted polymer was regulated by initial monomer concentrations. The second thermoresponsive blocks were added to the RAFT-related DTB groups located at PBzMA termini through the propagation of PIPAAm chains, resulting in formation of PBzMA-b-PIPAAm brushes. Surface characteristics of the block co-polymer brushes and its influence on thermally regulated cellular behavior were investigated using bovine carotid artery endothelial cells (BAECs), compared with PIPAAm brush surfaces. Cell adhesion/detachment behavior on thermoresponsive polymer brush surfaces significantly depended on their individual polymer architectures and chemical compositions of grafted polymers. Low-temperature treatment at 20°C, below the phase-transition temperature of PIPAAm, induced the spontaneous detachment of adhering cells from the PBzMA-b-PIPAAm brush surfaces with a higher rate than that from PIPAAm brush surfaces. In addition, the cell-repellent effect of the hydrophobic basal layer successfully accelerated for harvesting BAEC sheets from the block co-polymer brush surfaces. Unique features of thermoresponsive block co-polymer brush architectures can be applied to control cell-adhesion strength for enhancing cell adhesion or accelerating cell detachment.


Assuntos
Resinas Acrílicas/química , Técnicas de Cultura de Células/instrumentação , Ácidos Polimetacrílicos/química , Temperatura , Animais , Artérias Carótidas/fisiologia , Bovinos , Adesão Celular , Técnicas de Cultura de Células/métodos , Células Cultivadas , Células Endoteliais/fisiologia , Vidro , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Estrutura Molecular , Polimerização , Succinimidas/química , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA