Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Anat ; 241(4): 951-965, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933695

RESUMO

The cranial casques of modern cassowaries (Casuarius) have long intrigued researchers; however, in-depth studies regarding their morphological variation are scarce. Through visual inspection, it has been recognized that casque variability exists between conspecifics. Understanding casque variation has both evolutionary and ecological importance. Although hypothesized to be targeted by selection, intraspecific casque variation has not been quantified previously. Through a large sample of C. casuarius (n = 103), we compared casque shape (lateral and rostral views) between sexes and between individuals from non-overlapping geographical regions using two-dimensional (2D) geometric morphometrics. We found no statistically significant differences between the casque shape of females and males and few substantial shape differences between individuals from different geographic areas. Much of the intraspecific variation within C. casuarius is due to casque asymmetries (77.5% rightward deviating, 20.7% leftward deviating, and 1.8% non-deviating from the midline; n = 111), which explain the high variability of southern cassowary casque shape, particularly from the rostral aspect. Finally, we discuss how our non-significant findings implicate social selection theory, and we identify the benefits of quantifying such variation for further elucidating casque function(s) and the social biology of cassowaries.


Assuntos
Struthioniformes , Animais , Evolução Biológica , Feminino , Humanos , Masculino , Crânio/anatomia & histologia
2.
J Anat ; 239(2): 307-335, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33665832

RESUMO

Therizinosaurs are unusual theropods from the Upper Cretaceous of Asia and North America. North American representatives include Falcarius utahensis from central Utah, Nothronychus mckinleyi from west central New Mexico, and N. graffami from southern Utah. Nothronychus was quite large, with well-developed forelimbs and pectoral girdle. In many respects, however, these structures were typical for conventional carnivorous theropods, although therizinosaurs have been hypothesized to be herbivorous using anatomical and functional inferences. There is no indication of increased range of motion within the forelimbs, as might be predicted for derived non-avian theropods. The muscular anatomy of the pectoral girdle and forelimb of Nothronychus is reconstructed using visible muscle scars, data from extant birds and crocodilians, and models for other theropods. The osteology and inferred musculature is a mosaic of primitive and derived characters for theropods. A fossa pneumotricipitales may have been present in the proximal humerus. There was a well-developed fossa brachialis in the distal humerus. The epicleidium of the furcula is deflected, reflecting either taphonomic deformation or possibly accommodation of M. supracoracoideus in a triosseal canal, but such a development has yet to be described in any non-avian theropod. In many respects, the other muscular results were quite similar to those inferred for dromaeosaurs.


Assuntos
Dinossauros/anatomia & histologia , Membro Anterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Animais , Dinossauros/fisiologia , Membro Anterior/fisiologia , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular
3.
J Anat ; 238(3): 598-614, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33044012

RESUMO

Nothronychus was a large, derived therizinosaur from the Upper Cretaceous of Utah and New Mexico. The genus is known from elements that have been referred to single individuals. Therizinosaurs were unusual maniraptoran theropods close to the origin of birds. The axial skeleton is extensively pneumatized, but CT scans reveal an apneumatic synsacrum. Inferred air sacs invade the basicranium, the presacral vertebrae, and the proximal caudal vertebrae, but bypassed the sacrum resulting in a caudosacral hiatus similar to some sauropods and reflecting the development of multiple diverticula from the abdominal air sac. The vertebral pneumatic chambers are described here and compared with those observed in the theropod Allosaurus and the recent avian Dinornis. The vertebrae of Nothronychus are intermediate between those two theropods. It is inferred to have possessed avian-like abdominal air sacs. This theropod would have had unidirectional lungs, as in birds, but this character cannot be related to endothermy.


Assuntos
Dinossauros/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Sacos Aéreos , Animais , Fósseis
4.
Biol Lett ; 17(7): 20210168, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34256583

RESUMO

The ability of palaeontologists to correctly diagnose and classify new fossil species from incomplete morphological data is fundamental to our understanding of evolution. Different parts of the vertebrate skeleton have different likelihoods of fossil preservation and varying amounts of taxonomic information, which could bias our interpretations of fossil material. Substantial previous research has focused on the diversity and macroevolution of non-avian theropod dinosaurs. Theropods provide a rich dataset for analysis of the interactions between taxonomic diagnosability and fossil preservation. We use specimen data and formal taxonomic diagnoses to create a new metric, the Likelihood of Diagnosis, which quantifies the diagnostic likelihood of fossil species in relation to bone preservation potential. We use this to assess whether a taxonomic identification bias impacts the non-avian theropod fossil record. We find that the patterns of differential species abundance and clade diversity are not a consequence of their relative diagnosability. Although there are other factors that bias the theropod fossil record that are not investigated here, our results suggest that patterns of relative abundance and diversity for theropods might be more representative of Mesozoic ecology than often considered.


Assuntos
Dinossauros , Animais , Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Filogenia , Esqueleto
5.
Proc Biol Sci ; 287(1939): 20202258, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33234083

RESUMO

The independent evolution of gigantism among dinosaurs has been a topic of long-standing interest, but it remains unclear if gigantic theropods, the largest bipeds in the fossil record, all achieved massive sizes in the same manner, or through different strategies. We perform multi-element histological analyses on a phylogenetically broad dataset sampled from eight theropod families, with a focus on gigantic tyrannosaurids and carcharodontosaurids, to reconstruct the growth strategies of these lineages and test if particular bones consistently preserve the most complete growth record. We find that in skeletally mature gigantic theropods, weight-bearing bones consistently preserve extensive growth records, whereas non-weight-bearing bones are remodelled and less useful for growth reconstruction, contrary to the pattern observed in smaller theropods and some other dinosaur clades. We find a heterochronic pattern of growth fitting an acceleration model in tyrannosaurids, with allosauroid carcharodontosaurids better fitting a model of hypermorphosis. These divergent growth patterns appear phylogenetically constrained, representing extreme versions of the growth patterns present in smaller coelurosaurs and allosauroids, respectively. This provides the first evidence of a lack of strong mechanistic or physiological constraints on size evolution in the largest bipeds in the fossil record and evidence of one of the longest-living individual dinosaurs ever documented.


Assuntos
Evolução Biológica , Tamanho Corporal , Dinossauros , Animais , Osso e Ossos/fisiologia , Fósseis , Filogenia
6.
J Anat ; 237(5): 870-889, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32794182

RESUMO

Birds have lost and modified the musculature joining the pectoral girdle to the skull and hyoid, called the pectoral extrinsic appendicular and infrahyoid musculature. These muscles include the levator scapulae, sternomandibularis, sternohyoideus, episternocleidomastoideus, trapezius, and omohyoideus. As non-avian theropod dinosaurs are the closest relatives to birds, it is worth investigating what conditions they may have exhibited to learn when and how these muscles were lost or modified. Using extant phylogenetic bracketing, osteological correlates and non-osteological influences of these muscles are identified and discussed. Compsognathids and basal Maniraptoriformes were found to have been the likeliest transition points of a derived avian condition of losing or modifying these muscles. Increasing needs to control the feather tracts of the neck and shoulder, for insulation, display, or tightening/readjustment of the skin after dynamic neck movements may have been the selective force that drove some of these muscles to be modified into dermo-osseous muscles. The loss and modification of shoulder protractors created a more immobile girdle that would later be advantageous for flight in birds. The loss of the infrahyoid muscles freed the hyolarynx, trachea, and esophagus which may have aided in vocal tract filtering.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Animais
7.
Syst Biol ; 68(5): 840-851, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753719

RESUMO

The last half century of paleornithological research has transformed the way that biologists perceive the evolutionary history of birds. This transformation has been driven, since 1969, by a series of exciting fossil discoveries combined with intense scientific debate over how best to interpret these discoveries. Ideally, as evidence accrues and results accumulate, interpretive scientific agreement forms. But this has not entirely happened in the debate over avian origins: the accumulation of scientific evidence and analyses has had some effect, but not a conclusive one, in terms of resolving the question of avian origins. Although the majority of biologists have come to accept that birds are dinosaurs, there is lingering and, in some quarters, strident opposition to this view. In order to both understand the ongoing disagreement about avian origins and generate a prediction about the future of the debate, here we use a revised model of scientific practice to assess the current and historical state of play surrounding the topic of bird evolutionary origins. Many scientists are familiar with the metascientific scholars Sir Karl Popper and Thomas Kuhn, and these are the primary figures that have been appealed to so far, in prior attempts to assess the dispute. But we demonstrate that a variation of Imre Lakatos's model of progressive versus degenerative research programmes provides a novel and productive assessment of the debate. We establish that a refurbished Lakatosian account both explains the intractability of the dispute and predicts a likely outcome for the debate about avian origins. In short, here, we offer a metascientific tool for rationally assessing competing theories-one that allows researchers involved in seemingly intractable scientific disputes to advance their debates.


Assuntos
Evolução Biológica , Classificação/métodos , Plumas , Fósseis , Animais , Aves/classificação , Dinossauros/classificação , Modelos Teóricos , Ciência/tendências
8.
Biol Lett ; 16(12): 20200750, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33321067

RESUMO

Theropod dinosaurs are well known for having a ziphodont dentition: serrated, blade-shaped teeth that they used for cutting through prey. Serrations along the carinae of theropod teeth are composed of true denticles, a complex arrangement of dentine, enamel, and interdental folds. This structure would have supported individual denticles and dissipated the stresses associated with feeding. These particular serrations were previously thought to be unique to theropod dinosaurs and some other archosaurs. Here, we identify the same denticles and interdental folds forming the cutting edges in the teeth of a Permian gorgonopsian synapsid, extending the temporal and phylogenetic distribution of this dental morphology. This remarkable instance of convergence not only represents the earliest record of this adaptation to hypercarnivory but also demonstrates that the first iteration of this feature appeared in non-mammalian synapsids. Comparisons of tooth serrations in gorgonopsians with those of earlier synapsids and hypercarnivorous mammals reveal some gorgonopsians acquired a complex tissue arrangement that differed from other synapsids.


Assuntos
Dinossauros , Dente , Animais , Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Mamíferos , Filogenia
9.
Proc Biol Sci ; 286(1904): 20190909, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31185870

RESUMO

The olfactory bulb (OB) ratio is the size of the OB relative to the cerebral hemisphere, and is used to estimate the proportion of the forebrain devoted to smell. In birds, OB ratio correlates with the number of olfactory receptor (OR) genes and therefore has been used as a proxy for olfactory acuity. By coupling OB ratios with known OR gene repertoires in birds, we infer minimum repertoire sizes for extinct taxa, including non-avian dinosaurs, using phylogenetic modelling, ancestral state reconstruction and comparative genomics. We highlight a shift in the scaling of OB ratio to body size along the lineage leading to modern birds, demonstrating variable OR repertoires present in different dinosaur and crown-bird lineages, with varying factors potentially influencing sensory evolution in theropods. We investigate the ancestral sensory space available to extinct taxa, highlighting potential adaptations to ecological niches. Through combining morphological and genomic data, we show that, while genetic information for extinct taxa is forever lost, it is potentially feasible to investigate evolutionary trajectories in extinct genomes.


Assuntos
Dinossauros/genética , Filogenia , Receptores Odorantes/genética , Olfato/genética , Adaptação Fisiológica , Animais , Evolução Biológica , Simulação por Computador , Dinossauros/anatomia & histologia , Dinossauros/metabolismo , Genômica , Bulbo Olfatório/anatomia & histologia
10.
Genesis ; 56(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28734068

RESUMO

The developing limbs of chicken embryos have served as pioneering models for understanding pattern formation for over a century. The ease with which chick wing and leg buds can be experimentally manipulated, while the embryo is still in the egg, has resulted in the discovery of important developmental organisers, and subsequently, the signals that they produce. Sonic hedgehog (Shh) is produced by mesenchyme cells of the polarizing region at the posterior margin of the limb bud and specifies positional values across the antero-posterior axis (the axis running from the thumb to the little finger). Detailed experimental embryology has revealed the fundamental parameters required to specify antero-posterior positional values in response to Shh signaling in chick wing and leg buds. In this review, the evolution of the avian wing and leg will be discussed in the broad context of tetrapod paleontology, and more specifically, ancestral theropod dinosaur paleontology. How the parameters that dictate antero-posterior patterning could have been modulated to produce the avian wing and leg digit patterns will be considered. Finally, broader speculations will be made regarding what the antero-posterior patterning of chick limbs can tell us about the evolution of other digit patterns, including those that were found in the limbs of the earliest tetrapods.


Assuntos
Evolução Biológica , Padronização Corporal , Dedos do Pé , Asas de Animais , Animais , Galinhas
11.
J Anat ; 232(4): 604-640, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363129

RESUMO

Understanding ontogenetic patterns is important in vertebrate paleontology because the assessed skeletal maturity of an individual often has implications for paleobiogeography, species synonymy, paleobiology, and body size evolution of major clades. Further, for many groups the only means of confidently determining ontogenetic status of an organism is through the destructive process of histological sampling. Although the ontogenetic patterns of Late Jurassic and Cretaceous dinosaurs are better understood, knowledge of the ontogeny of the earliest dinosaurs is relatively poor because most species-level growth series known from these groups are small (usually, maximum of n ~ 5) and incomplete. To investigate the morphological changes that occur during ontogeny in early dinosaurs, I used ontogenetic sequence analysis (OSA) to reconstruct developmental sequences of morphological changes in the postcranial ontogeny of the early theropods Coelophysis bauri and Megapnosaurus rhodesiensis, both of which are known from large sample sizes (n = 174 and 182, respectively). I found a large amount of sequence polymorphism (i.e. intraspecific variation in developmental patterns) in both taxa, and especially in C. bauri, which possesses this variation in every element analyzed. Megapnosaurus rhodesiensis is similar, but it possesses no variation in the sequence of development of ontogenetic characters in the tibia and tarsus. Despite the large amount of variation in development, many characters occur consistently earlier or later in ontogeny and could therefore be important morphological features for assessing the relative maturity of other early theropods. Additionally, there is a phylogenetic signal to the order in which homologous characters appear in ontogeny, with homologous characters appearing earlier or later in developmental sequences of early theropods and the close relatives of dinosaurs, silesaurids. Many of these morphological features are important characters for the reconstruction of archosaurian phylogeny (e.g. trochanteric shelf). Because these features vary in presence or appearance with ontogeny, these characters should be used with caution when undertaking phylogenetic analyses in these groups, since a specimen may possess certain character states owing to ontogenetic stage, not evolutionary relationships.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/classificação , Animais , Tamanho Corporal , Dinossauros/crescimento & desenvolvimento , Fêmur/anatomia & histologia , Fósseis/anatomia & histologia , Úmero/anatomia & histologia , Modelos Lineares , Distribuição Normal , Paleontologia , Filogenia
12.
J Anat ; 232(1): 80-104, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29114853

RESUMO

The origin of the avian hand, with its reduced and fused carpals and digits, from the five-fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four- to three-fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five- to four-fingered transition among early dinosaurs, along with changes in carpus morphology. New three-dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra- and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine-scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not proceed in a neat, stepwise fashion, but was characterized by multiple losses and possible gains of carpals, metacarpals and phalanges. Taken together, the high degree of intra- and interspecific variability in the number and identities of carpals, and the state of reduction of the fourth and fifth digits suggest the presence of a 'zone of developmental variability' in early dinosaur manus evolution, from which novel avian-like morphologies eventually emerged and became channelized among later theropod clades.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Membro Anterior/anatomia & histologia , Ossos Metacarpais/anatomia & histologia , Animais , Fósseis , Filogenia , Especificidade da Espécie
13.
J Anat ; 231(6): 906-920, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28833095

RESUMO

Measuring range of motion (ROM) is a valuable technique that can link bone morphology to joint function in both extant and extinct taxa. ROM results are commonly presented as tables or graphs of maxima and minima for each rotational degree of freedom. We investigate the interactions among three degrees of freedom using X-ray reconstruction of moving morphology (XROMM) to measure ROM of the main hind limb joints of Helmeted Guineafowl (Numida meleagris). By plotting each rotation on an axis, we generate three-dimensional ROM volumes or envelopes composed of hundreds of extreme joint positions for the hip, knee, and intertarsal joints. We find that the shapes of ROM volumes can be quite complex, and that the contribution of long-axis rotation is often substantial. Plotting in vivo poses from individual birds executing different behaviors shows varying use of potential rotational combinations within their ROM envelopes. XROMM can provide unprecedented high-resolution data on the spatial relationship of skeletal elements and thereby illuminate/elucidate the complex ways in which soft and hard tissues interact to produce functional joints. In joints with three rotational degrees of freedom, two-dimensional representations of ROM (flexion/extension and abduction/adduction) are incomplete.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Amplitude de Movimento Articular/fisiologia , Animais , Articulações/anatomia & histologia , Articulações/fisiologia
14.
BMC Evol Biol ; 16: 67, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27012653

RESUMO

BACKGROUND: Oviraptorids, like many other dinosaurs, clearly had a complex pattern of skeletal growth involving numerous morphological changes. However, many ontogenetic skeletal changes in oviraptorids were previously unclear due to the lack of well preserved specimens that represent very young developmental stages. RESULTS: Here we report three elongatoolithid dinosaur eggs from the Upper Cretaceous Nanxiong Formation of Nankang District, Ganzhou City, Jiangxi Province, China that contain in ovo embryonic skeletons. The eggs themselves show diagnostic features of the oofamily Elongatoolithidae, whereas the embryos are identified as taxonomically indeterminate oviraptorids. The three new specimens display pathological eggshell features, including double-layered and multilayered cones in the columnar layer, which probably result from high levels of pathogenic trace elements in the environment. Nevertheless, the skeletons of the preserved embryos exhibit no structural or histological abnormalities. Comparisons between the new embryos and other oviraptorid specimens reveal 20 osteological features that appear to change substantially during ontogeny in oviraptorids. For example, the dorsoventral height of the skull increases more rapidly than the anteroposterior length during oviraptorid ontogeny, and the initially paired nasals fuse at an early stage, presumably facilitating growth of a crest. CONCLUSIONS: The new specimens represent the first known oviraptorid embryos associated with pathological eggshells. The absence of structural and histological abnormalities indicates the environmental factor that led to the eggshell pathologies did not affect the skeletal development of the oviraptorids themselves. As in tyrannosaurids, but in contrast to the situation in other maniraptorans, the oviraptorid skull becomes proportionally dorsoventrally deeper during ontogeny. Although oviraptorids and therizinosauroids occupy broadly the same grade of maniraptoran evolution, the embryonic ossification patterns of the vertebral column and furcular hypocleidium appear to differ significantly between the two clades. The limb proportions of juvenile oviraptorids indicate that they were bipedal, like adults. Oviraptorids may have differed greatly from therizinosauroids in their growth trajectories and locomotor modes during early post-hatching ontogeny, essentially occupying a different ecological niche.


Assuntos
Dinossauros/classificação , Dinossauros/crescimento & desenvolvimento , Fósseis , Animais , Evolução Biológica , China , Dinossauros/anatomia & histologia , Embrião não Mamífero/anatomia & histologia , Extremidades/anatomia & histologia , Óvulo/citologia , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia
15.
Anat Rec (Hoboken) ; 307(3): 549-565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37584310

RESUMO

Pseudosuchian archosaurs, reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic and are thus associated with hypotheses of high ecological diversity during this time. One example involves basal loricatans which are non-crocodylomorph pseudosuchians traditionally known as "rauisuchians." Their large size (5-8+ m long) and morphological similarities to post-Triassic theropod dinosaurs, including dorsoventrally deep skulls and serrated dentitions, suggest basal loricatans were apex predators. However, this hypothesis does not consider functional behaviors that can influence more refined roles of predators in their environment, for example, degree of carcass utilization. Here, we apply finite element analysis to a juvenile but three-dimensionally well-preserved cranium of the basal loricatan Saurosuchus galilei to investigate its functional morphology and to compare with stress distributions from the theropod Allosaurus fragilis to assess degrees of functional convergence between Triassic and post-Triassic carnivores. We find similar stress distributions and magnitudes between the two study taxa under the same functional simulations, indicating that Saurosuchus had a somewhat strong skull and thus exhibited some degree of functional convergence with theropods. However, Saurosuchus also had a weak bite for an animal of its size (1015-1885 N) that is broadly equivalent to the bite force of modern gharials (Gavialis gangeticus). We infer that Saurosuchus potentially avoided tooth-bone interactions and consumed the softer parts of carcasses, unlike theropods and other basal loricatans. This deduced feeding mode for Saurosuchus increases the known functional diversity of basal loricatans and highlights functional differences between Triassic and post-Triassic apex predators.


Assuntos
Dinossauros , Dente , Animais , Dinossauros/anatomia & histologia , Répteis/anatomia & histologia , Dente/anatomia & histologia , Crânio/anatomia & histologia , Cabeça/anatomia & histologia , Fósseis , Evolução Biológica , Filogenia
16.
BMC Ecol Evol ; 24(1): 39, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622512

RESUMO

Non-avialan theropod dinosaurs had diverse ecologies and varied skull morphologies. Previous studies of theropod cranial morphology mostly focused on higher-level taxa or characteristics associated with herbivory. To better understand morphological disparity and function within carnivorous theropod families, here we focus on the Dromaeosauridae, 'raptors' traditionally seen as agile carnivorous hunters.We applied 2D geometric morphometrics to quantify skull shape, performed mechanical advantage analysis to assess the efficiency of bite force transfer, and performed finite element analysis to examine strain distribution in the skull during biting. We find that dromaeosaurid skull morphology was less disparate than most non-avialan theropod groups. Their skulls show a continuum of form between those that are tall and short and those that are flat and long. We hypothesise that this narrower morphological disparity indicates developmental constraint on skull shape, as observed in some mammalian families. Mechanical advantage indicates that Dromaeosaurus albertensis and Deinonychus antirrhopus were adapted for relatively high bite forces, while Halszkaraptor escuilliei was adapted for high bite speed, and other dromaeosaurids for intermediate bite forces and speeds. Finite element analysis indicates regions of high strain are consistent within dromaeosaurid families but differ between them. Average strain levels do not follow any phylogenetic pattern, possibly due to ecological convergence between distantly-related taxa.Combining our new morphofunctional data with a re-evaluation of previous evidence, we find piscivorous reconstructions of Halszkaraptor escuilliei to be unlikely, and instead suggest an invertivorous diet and possible adaptations for feeding in murky water or other low-visibility conditions. We support Deinonychus antirrhopus as being adapted for taking large vertebrate prey, but we find that its skull is relatively less resistant to bite forces than other dromaeosaurids. Given the recovery of high bite force resistance for Velociraptor mongoliensis, which is believed to have regularly engaged in scavenging behaviour, we suggest that higher bite force resistance in a dromaeosaurid taxon may reflect a greater reliance on scavenging rather than fresh kills.Comparisons to the troodontid Gobivenator mongoliensis suggest that a gracile rostrum like that of Velociraptor mongoliensis is ancestral to their closest common ancestor (Deinonychosauria) and the robust rostra of Dromaeosaurus albertensis and Deinonychus antirrhopus are a derived condition. Gobivenator mongoliensis also displays a higher jaw mechanical advantage and lower resistance to bite force than the examined dromaeosaurids, but given the hypothesised ecological divergence of troodontids from dromaeosaurids it is unclear which group, if either, represents the ancestral condition. Future work extending sampling to troodontids would therefore be invaluable and provide much needed context to the origin of skull form and function in early birds. This study illustrates how skull shape and functional metrics can discern non-avialan theropod ecology at lower taxonomic levels and identify variants of carnivorous feeding.


Assuntos
Evolução Biológica , Crânio , Humanos , Animais , Filogenia , Crânio/anatomia & histologia , Cabeça , Carnivoridade , Mamíferos
17.
Anat Rec (Hoboken) ; 306(7): 1864-1879, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36193654

RESUMO

Paleopathological diagnoses provide key information on the macroevolutionary origin of disease as well as behavioral and physiological inferences that are inaccessible via direct observation of extinct organisms. Here we describe the external gross morphology and internal architecture of a pathologic right second metatarsal (MMNS VP-6332) of a large-bodied ornithomimid (~432 kg) from the Santonian (Upper Cretaceous) Eutaw Formation in Mississippi, using a combination of X-ray computed microtomography (microCT) and petrographic histological analyses. X-ray microCT imaging and histopathologic features are consistent with multiple complete, oblique to comminuted, minimally displaced mid-diaphyseal cortical fractures that produce a "butterfly" fragment fracture pattern, and secondary osteomyelitis with a bone fistula formation. We interpret this as evidence of blunt force trauma to the foot that could have resulted from intra- or interspecific competition or predator-prey interaction, and probably impaired the function of the metatarsal as a weight-bearing element until the animal's death. Of particular interest is the apparent decoupling of endosteal and periosteal pathological bone deposition in MMNS VP-6332, which produces transverse sections exhibiting homogenously thick endosteal pathological bone in the absence of localized periosteal reactive bone. These distribution and depositional patterns are used as criteria for ruling out a pathological origin in favor of a reproductive one for unusual endosteal bone in fossil specimens. On the basis of MMNS VP-6332, we suggest caution in their use to substantiate a medullary bone identification in extinct archosaurians.


Assuntos
Fraturas Ósseas , Osteomielite , Animais , Fósseis , Osso e Ossos , Fraturas Ósseas/diagnóstico por imagem , Microtomografia por Raio-X , Osteomielite/diagnóstico por imagem
18.
PeerJ ; 11: e15453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273543

RESUMO

Isolated spinosaurid teeth are relatively well represented in the Lower Cretaceous Wealden Supergroup of southern England, UK. Until recently it was assumed that these teeth were referable to Baryonyx, the type species (B. walkeri) and specimen of which is from the Barremian Upper Weald Clay Formation of Surrey. British spinosaurid teeth are known from formations that span much of the c. 25 Ma depositional history of the Wealden Supergroup, and recent works suggest that British spinosaurids were more taxonomically diverse than previously thought. On the basis of both arguments, it is appropriate to doubt the hypothesis that isolated teeth from outside the Upper Weald Clay Formation are referable to Baryonyx. Here, we use phylogenetic, discriminant and cluster analyses to test whether an isolated spinosaurid tooth (HASMG G369a, consisting of a crown and part of the root) from a non-Weald Clay Formation unit can be referred to Baryonyx. HASMG G369a was recovered from an uncertain Lower Cretaceous locality in East Sussex but is probably from a Valanginian exposure of the Hastings Group and among the oldest spinosaurid material known from the UK. Spinosaurid affinities are both quantitatively and qualitatively supported, and HASMG G369a does not associate with Baryonyx in any analysis. This supports recent reinterpretations of the diversity of spinosaurid in the Early Cretaceous of Britain, which appears to have been populated by multiple spinosaurid lineages in a manner comparable to coeval Iberian deposits. This work also reviews the British and global records of early spinosaurids (known mainly from dental specimens), and revisits evidence for post-Cenomanian spinosaurid persistence.


Assuntos
Dinossauros , Dente , Animais , Dinossauros/anatomia & histologia , Filogenia , Fósseis , Argila
19.
PeerJ ; 11: e14665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778140

RESUMO

We report here the first dinosaur skeletal material described from the marine Fox Hills Formation (Maastrichtian) of western South Dakota. The find consists of two theropod pedal phalanges: one recovered from the middle part of the Fairpoint Member in Meade County, South Dakota; and the other from the Iron Lightning Member in Ziebach County, South Dakota. Comparison with pedal phalanges of other theropods suggests strongly that the Fairpoint specimen is a right pedal phalanx, possibly III-2, from a large ornithomimid. The Iron Lightning specimen we cautiously identify as an ornithomimid left pedal phalanx II-2. The Fairpoint bone comes from thinly bedded and cross-bedded marine sandstones containing large hematitic concretions and concretionary horizons. Associated fossils include osteichthyan teeth, fin spines and otoliths, and abundant teeth of common Cretaceous nearshore and pelagic chondrichthyans. Leaf impressions and other plant debris, blocks of fossilized wood, and Ophiomorpha burrows are also common. The Iron Lightning bone comes from a channel deposit composed of fine to coarse sandstone beds, some of which contain bivalves, and a disseminated assemblage of mammal teeth, chondrichthyan teeth, and fragmentary dinosaur teeth and claws. We interpret the depositional environment of the two specimens as marginal marine. The Fairpoint bone derives from a nearshore foreset setting, above wave base subject to tidal flux and storm activity. The Iron Lightning specimen comes from a topset channel infill probably related to deposition on a tidal flat or associated coastal setting. The taphonomic history and ages of the two bones differ. Orthogonal cracks in the cortical bone of the Fairpoint specimen suggest post-mortem desiccation in a dryland coastal setting prior to transport and preservation in the nearby nearshore setting described above. The pristine surface of the Iron Lightning specimen indicates little transport before incorporation into the channel deposit in which it was found. The Fairpoint bone bed most probably lies within the Hoploscaphites nicolletii Ammonite Zone of the early late Maastrichtian, and would therefore have an approximate age of 69 Ma. The Iron Lightning bone is from the overlying H. nebrascensis Ammonite Zone, and is thus about one million years younger.


Assuntos
Dinossauros , Dente , Animais , South Dakota , Osso e Ossos , Fósseis , Dinossauros/anatomia & histologia , Mamíferos
20.
PeerJ ; 10: e13543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702254

RESUMO

Postcranial elements (cervical, sacral and caudal vertebrae, as well as ilium, rib and limb bone fragments) belonging to a gigantic tetanuran theropod were recovered from the basal unit (the White Rock Sandstone equivalent) of the Vectis Formation near Compton Chine, on the southwest coast of the Isle of Wight. These remains appear to pertain to the same individual, with enormous dimensions similar to those of the Spinosaurus holotype and exceeding those of the largest European theropods previously reported. A combination of features-including the presence of spinodiapophyseal webbing on an anterior caudal vertebra-suggest that this is a member of Spinosauridae, though a lack of convincing autapomorphies precludes the identification of a new taxon. Phylogenetic analysis supports spinosaurid affinities but we were unable to determine a more precise position within the clade weak support for a position within Spinosaurinae or an early-diverging position within Spinosauridae were found in some data runs. Bioerosion in the form of curved tubes is evident on several pieces, potentially related to harvesting behaviour by coleopteran bioeroders. This is the first spinosaurid reported from the Vectis Formation and the youngest British material referred to the clade. This Vectis Formation spinosaurid is unusual in that the majority of dinosaurs from the Lower Cretaceous units of the Wealden Supergroup are from the fluviolacustrine deposits of the underlying Barremian Wessex Formation. In contrast, the lagoonal facies of the upper Barremian-lower Aptian Vectis Formation only rarely yield dinosaur material. Our conclusions are in keeping with previous studies that emphasise western Europe as a pivotal region within spinosaurid origination and diversification.


Assuntos
Dinossauros , Animais , Filogenia , Dinossauros/anatomia & histologia , Fósseis , Coluna Vertebral , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA