Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571495

RESUMO

Large-span spatial lattice structures generally have characteristics such as incomplete modal information, high modal density, and high degrees of freedom. To address the problem of misjudgment in the damage detection of large-span spatial structures caused by these characteristics, this paper proposed a damage identification method based on time series models. Firstly, the order of the autoregressive moving average (ARMA) model was selected based on the Akaike information criterion (AIC). Then, the long autoregressive method was used to estimate the parameters of the ARMA model and extract the residual sequence of the autocorrelation part of the model. Furthermore, principal component analysis (PCA) was introduced to reduce the dimensionality of the model while retaining the characteristic values. Finally, the Mahalanobis distance (MD) was used to construct the damage sensitive feature (DSF). The dome of Taiyuan Botanical Garden in China is one of the largest non-triangular timber lattice shells worldwide. Relying on the structural health monitoring (SHM) project of this structure, this paper verified the effectiveness of the damage identification model through numerical simulation and determined the damage degree of the dome structure through SHM measurement data. The results demonstrated that the proposed damage identification method can effectively identify the damage of large-span timber lattice structures, locate the damage position, and estimate the degree of damage. The constructed DSF had relatively strong robustness to small damage and environmental noise and has practical application value for SHM in engineering.

2.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998330

RESUMO

This article explores the possibility of predicting the compliance coefficients for composite shear keys of built-up timber beams using artificial neural networks. The compliance coefficients determine the stresses and deflections of built-up timber beams. The article analyzes current theoretical methods for designing wooden built-up timber beams with shear keys and possible ways of applying them in modern construction. One of the design methods, based on the use of the compliance coefficients, is also discussed in detail. The novelty of this research is that the authors of the article collected, analysed, and combined data on the experimental values of the compliance coefficient for composite shear keys of built-up timber beams obtained by different researchers and published in other studies. For the first time, the authors of this article generated a table of input and output data for predicting compliance coefficients based on the analysis of the literature and collected data by the authors. As a result of this research, the article's authors proposed an artificial neural network (ANN) architecture and determined the mean absolute percentage error for the compliance coefficients kw and ki, which are equal to 0.054% and 0.052%, respectively. The proposed architecture can be used for practical application in designing built-up timber beams using various composite shear keys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA