Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.167
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(20): 5107-5121.e14, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551316

RESUMO

Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.


Assuntos
Condutos Olfatórios/citologia , Condutos Olfatórios/diagnóstico por imagem , Imagem com Lapso de Tempo , Animais , Axônios/fisiologia , Células Cultivadas , Dendritos/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Microtúbulos/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Fatores de Tempo
2.
EMBO J ; 42(9): e113490, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36920246

RESUMO

Mycobacterium tuberculosis (Mtb) infection is initiated by inhalation of bacteria into lung alveoli, where they are phagocytosed by resident macrophages. Intracellular Mtb replication induces the death of the infected macrophages and the release of bacterial aggregates. Here, we show that these aggregates can evade phagocytosis by killing macrophages in a contact-dependent but uptake-independent manner. We use time-lapse fluorescence microscopy to show that contact with extracellular Mtb aggregates triggers macrophage plasma membrane perturbation, cytosolic calcium accumulation, and pyroptotic cell death. These effects depend on the Mtb ESX-1 secretion system, however, this system alone cannot induce calcium accumulation and macrophage death in the absence of the Mtb surface-exposed lipid phthiocerol dimycocerosate. Unexpectedly, we found that blocking ESX-1-mediated secretion of the EsxA/EsxB virulence factors does not eliminate the uptake-independent killing of macrophages and that the 50-kDa isoform of the ESX-1-secreted protein EspB can mediate killing in the absence of EsxA/EsxB secretion. Treatment with an ESX-1 inhibitor reduces uptake-independent killing of macrophages by Mtb aggregates, suggesting that novel therapies targeting this anti-phagocytic mechanism could prevent the propagation of extracellular bacteria within the lung.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Macrófagos/metabolismo , Fatores de Virulência/metabolismo
3.
Development ; 151(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174987

RESUMO

To clarify our understanding of glial phagocytosis in retinal development, we used real-time imaging of larval zebrafish to provide cell-type specific resolution of this process. We show that radial Müller glia frequently participate in microglial phagocytosis while also completing a subset of phagocytic events. Müller glia actively engage with dying cells through initial target cell contact and phagocytic cup formation, after which an exchange of the dying cell from Müller glia to microglia often takes place. In addition, we find evidence that Müller glia cellular material, possibly from the initial Müller cell phagocytic cup, is internalized into microglial compartments. Previously undescribed Müller cell behaviors were seen, including cargo splitting, wrestling for targets and lateral passing of cargo to neighbors. Collectively, our work provides new insight into glial functions and intercellular interactions, which will allow future work to understand these behaviors on a molecular level.


Assuntos
Eferocitose , Microglia , Animais , Peixe-Zebra , Neuroglia , Fagocitose , Retina
4.
Plant J ; 118(2): 584-600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141174

RESUMO

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Assuntos
Germinação , Plântula , Fenótipo , Germinação/fisiologia , Sementes , Processamento de Imagem Assistida por Computador
5.
Mol Cell ; 68(3): 626-640.e5, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29107535

RESUMO

Eukaryotic cells spend most of their life in interphase of the cell cycle. Understanding the rich diversity of metabolic and genomic regulation that occurs in interphase requires the demarcation of precise phase boundaries in situ. Here, we report the properties of two genetically encoded fluorescence sensors, Fucci(CA) and Fucci(SCA), which enable real-time monitoring of interphase and cell-cycle biology. We re-engineered the Cdt1-based sensor from the original Fucci system to respond to S phase-specific CUL4Ddb1-mediated ubiquitylation alone or in combination with SCFSkp2-mediated ubiquitylation. In cultured cells, Fucci(CA) produced a sharp triple color-distinct separation of G1, S, and G2, while Fucci(SCA) permitted a two-color readout of G1 and S/G2. Fucci(CA) applications included tracking the transient G1 phase of rapidly dividing mouse embryonic stem cells and identifying a window for UV-irradiation damage in S phase. These results show that Fucci(CA) is an essential tool for quantitative studies of interphase cell-cycle regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas Culina/metabolismo , Células-Tronco Embrionárias/fisiologia , Corantes Fluorescentes/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas Culina/genética , Células-Tronco Embrionárias/citologia , Genes Reporter , Células HeLa , Humanos , Proteínas Luminescentes/genética , Camundongos
6.
Genes Dev ; 31(4): 383-398, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275001

RESUMO

A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been demonstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and ß-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and ß-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for ß cells, and a third monitoring circadian gene expression. Thus, phase entrainment properties, gene expression, and functional outputs of the α-cell and ß-cell clockworks could be assessed in vivo and in vitro at the population and single-cell level. These experiments showed that α-cellular and ß-cellular clocks are oscillating with distinct phases in vivo and in vitro. Diurnal transcriptome analysis in separated α and ß cells revealed that a high number of genes with key roles in islet physiology, including regulators of glucose sensing and hormone secretion, are differentially expressed in these cell types. Moreover, temporal insulin and glucagon secretion exhibited distinct oscillatory profiles both in vivo and in vitro. Altogether, our data indicate that differential entrainment characteristics of circadian α-cell and ß-cell clocks are an important feature in the temporal coordination of endocrine function and gene expression.


Assuntos
Relógios Circadianos/fisiologia , Regulação da Expressão Gênica , Células Secretoras de Glucagon/fisiologia , Glucagon/metabolismo , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Animais , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Colforsina/farmacologia , Ativadores de Enzimas/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/sangue , Células Secretoras de Glucagon/efeitos dos fármacos , Insulina/sangue , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Modelos Animais , Análise de Sequência de RNA , Fatores de Tempo
7.
Biol Reprod ; 110(6): 1115-1124, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38685607

RESUMO

Time-lapse microscopy for embryos is a non-invasive technology used to characterize early embryo development. This study employs time-lapse microscopy and machine learning to elucidate changes in embryonic growth kinetics with maternal aging. We analyzed morphokinetic parameters of embryos from young and aged C57BL6/NJ mice via continuous imaging. Our findings show that aged embryos accelerated through cleavage stages (from 5-cells) to morula compared to younger counterparts, with no significant differences observed in later stages of blastulation. Unsupervised machine learning identified two distinct clusters comprising of embryos from aged or young donors. Moreover, in supervised learning, the extreme gradient boosting algorithm successfully predicted the age-related phenotype with 0.78 accuracy, 0.81 precision, and 0.83 recall following hyperparameter tuning. These results highlight two main scientific insights: maternal aging affects embryonic development pace, and artificial intelligence can differentiate between embryos from aged and young maternal mice by a non-invasive approach. Thus, machine learning can be used to identify morphokinetics phenotypes for further studies. This study has potential for future applications in selecting human embryos for embryo transfer, without or in complement with preimplantation genetic testing.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Imagem com Lapso de Tempo , Animais , Camundongos , Imagem com Lapso de Tempo/métodos , Feminino , Desenvolvimento Embrionário/fisiologia , Embrião de Mamíferos/diagnóstico por imagem , Envelhecimento , Gravidez
8.
Magn Reson Med ; 91(4): 1449-1463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044790

RESUMO

PURPOSE: Time-lapse MRI enables tracking of single iron-labeled cells. Yet, due to temporal blurring, only slowly moving cells can be resolved. To study faster cells for example during inflammatory processes, accelerated acquisition is needed. METHODS: A rotating phantom system was developed to quantitatively measure the current maximum detectable speed of cells in time-lapse MRI. For accelerated cell tracking, an interleaved radial acquisition scheme was applied to phantom and murine brain in vivo time-lapse MRI experiments at 9.4 T. Detection of iron-labeled cells was evaluated in fully sampled and undersampled reconstructions with and without compressed sensing. RESULTS: The rotating phantom system enabled ultra-slow rotation of phantoms and a velocity detection limit of full-brain Cartesian time-lapse MRI of up to 172 µm/min was determined. Both phantom and in vivo measurements showed that single cells can be followed dynamically using radial time-lapse MRI. Higher temporal resolution of undersampled reconstructions reduced geometric distortion, the velocity detection limit was increased to 1.1 mm/min in vitro, and previously hidden fast-moving cells were recovered. In the mouse brain after in vivo labeling, a total of 42 ± 4 cells were counted in fully sampled, but only 7 ± 1 in undersampled images due to streaking artifacts. Using compressed sensing 33 ± 4 cells were detected. CONCLUSION: Interleaved radial time-lapse MRI permits retrospective reconstruction of both fully sampled and accelerated images, enables single cell tracking at higher temporal resolution and recovers cells hidden before due to blurring. The velocity detection limit as determined with the rotating phantom system increased two- to three-fold compared to previous results.


Assuntos
Rastreamento de Células , Imageamento por Ressonância Magnética , Animais , Camundongos , Estudos Retrospectivos , Limite de Detecção , Imagem com Lapso de Tempo , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ferro , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos
9.
Hum Reprod ; 39(2): 285-292, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061074

RESUMO

With the exponential growth of computing power and accumulation of embryo image data in recent years, artificial intelligence (AI) is starting to be utilized in embryo selection in IVF. Amongst different AI technologies, machine learning (ML) has the potential to reduce operator-related subjectivity in embryo selection while saving labor time on this task. However, as modern deep learning (DL) techniques, a subcategory of ML, are increasingly used, its integrated black-box attracts growing concern owing to the well-recognized issues regarding lack of interpretability. Currently, there is a lack of randomized controlled trials to confirm the effectiveness of such black-box models. Recently, emerging evidence has shown underperformance of black-box models compared to the more interpretable traditional ML models in embryo selection. Meanwhile, glass-box AI, such as interpretable ML, is being increasingly promoted across a wide range of fields and is supported by its ethical advantages and technical feasibility. In this review, we propose a novel classification system for traditional and AI-driven systems from an embryology standpoint, defining different morphology-based selection approaches with an emphasis on subjectivity, explainability, and interpretability.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Embrião de Mamíferos
10.
Hum Reprod ; 39(6): 1197-1207, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38600621

RESUMO

STUDY QUESTION: Can generative artificial intelligence (AI) models produce high-fidelity images of human blastocysts? SUMMARY ANSWER: Generative AI models exhibit the capability to generate high-fidelity human blastocyst images, thereby providing substantial training datasets crucial for the development of robust AI models. WHAT IS KNOWN ALREADY: The integration of AI into IVF procedures holds the potential to enhance objectivity and automate embryo selection for transfer. However, the effectiveness of AI is limited by data scarcity and ethical concerns related to patient data privacy. Generative adversarial networks (GAN) have emerged as a promising approach to alleviate data limitations by generating synthetic data that closely approximate real images. STUDY DESIGN, SIZE, DURATION: Blastocyst images were included as training data from a public dataset of time-lapse microscopy (TLM) videos (n = 136). A style-based GAN was fine-tuned as the generative model. PARTICIPANTS/MATERIALS, SETTING, METHODS: We curated a total of 972 blastocyst images as training data, where frames were captured within the time window of 110-120 h post-insemination at 1-h intervals from TLM videos. We configured the style-based GAN model with data augmentation (AUG) and pretrained weights (Pretrained-T: with translation equivariance; Pretrained-R: with translation and rotation equivariance) to compare their optimization on image synthesis. We then applied quantitative metrics including Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) to assess the quality and fidelity of the generated images. Subsequently, we evaluated qualitative performance by measuring the intelligence behavior of the model through the visual Turing test. To this end, 60 individuals with diverse backgrounds and expertise in clinical embryology and IVF evaluated the quality of synthetic embryo images. MAIN RESULTS AND THE ROLE OF CHANCE: During the training process, we observed consistent improvement of image quality that was measured by FID and KID scores. Pretrained and AUG + Pretrained initiated with remarkably lower FID and KID values compared to both Baseline and AUG + Baseline models. Following 5000 training iterations, the AUG + Pretrained-R model showed the highest performance of the evaluated five configurations with FID and KID scores of 15.2 and 0.004, respectively. Subsequently, we carried out the visual Turing test, such that IVF embryologists, IVF laboratory technicians, and non-experts evaluated the synthetic blastocyst-stage embryo images and obtained similar performance in specificity with marginal differences in accuracy and sensitivity. LIMITATIONS, REASONS FOR CAUTION: In this study, we primarily focused the training data on blastocyst images as IVF embryos are primarily assessed in blastocyst stage. However, generation of an array of images in different preimplantation stages offers further insights into the development of preimplantation embryos and IVF success. In addition, we resized training images to a resolution of 256 × 256 pixels to moderate the computational costs of training the style-based GAN models. Further research is needed to involve a more extensive and diverse dataset from the formation of the zygote to the blastocyst stage, e.g. video generation, and the use of improved image resolution to facilitate the development of comprehensive AI algorithms and to produce higher-quality images. WIDER IMPLICATIONS OF THE FINDINGS: Generative AI models hold promising potential in generating high-fidelity human blastocyst images, which allows the development of robust AI models as it can provide sufficient training datasets while safeguarding patient data privacy. Additionally, this may help to produce sufficient embryo imaging training data with different (rare) abnormal features, such as embryonic arrest, tripolar cell division to avoid class imbalances and reach to even datasets. Thus, generative models may offer a compelling opportunity to transform embryo selection procedures and substantially enhance IVF outcomes. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by a Horizon 2020 innovation grant (ERIN, grant no. EU952516) and a Horizon Europe grant (NESTOR, grant no. 101120075) of the European Commission to A.S. and M.Z.E., the Estonian Research Council (grant no. PRG1076) to A.S., and the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+) to M.Z.E. TRIAL REGISTRATION NUMBER: Not applicable.


Assuntos
Inteligência Artificial , Blastocisto , Humanos , Imagem com Lapso de Tempo/métodos , Processamento de Imagem Assistida por Computador/métodos , Fertilização in vitro/métodos , Feminino
11.
Hum Reprod ; 39(1): 53-61, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37963011

RESUMO

STUDY QUESTION: Are morphokinetic models better at prioritizing a euploid embryo for transfer over morphological selection by an embryologist? SUMMARY ANSWER: Morphokinetic algorithms lead to an improved prioritization of euploid embryos when compared to embryologist selection. WHAT IS KNOWN ALREADY: PREFER (predicting euploidy for embryos in reproductive medicine) is a previously published morphokinetic model associated with live birth and miscarriage. The second model uses live birth as the target outcome (LB model). STUDY DESIGN, SIZE, DURATION: Data for this cohort study were obtained from 1958 biopsied blastocysts at nine IVF clinics across the UK from January 2021 to December 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: The ability of the PREFER and LB models to prioritize a euploid embryo was compared against arbitrary selection and the prediction of four embryologists using the timelapse video, blinded to the morphokinetic time stamp. The comparisons were made using calculated percentages and normalized discounted cumulative gain (NDCG), whereby an NDCG score of 1 would equate to all euploid embryos being ranked first. In arbitrary selection, the ploidy status was randomly assigned within each cycle and the NDGC calculated, and this was then repeated 100 times and the mean obtained. MAIN RESULTS AND THE ROLE OF CHANCE: Arbitrary embryo selection would rank a euploid embryo first 37% of the time, embryologist selection 39%, and the LB and PREFER ploidy morphokinetic models 46% and 47% of the time, respectively. The AUC for LB and PREFER model was 0.62 and 0.63, respectively. Morphological selection did not significantly improve the performance of both morphokinetic models when used in combination. There was a significant difference between the NDGC metric of the PREFER model versus embryologist selection at 0.96 and 0.87, respectively (t = 14.1, P < 0.001). Similarly, there was a significant difference between the LB model and embryologist selection with an NDGC metric of 0.95 and 0.87, respectively (t = 12.0, P < 0.001). All four embryologists ranked embryos similarly, with an intraclass coefficient of 0.91 (95% CI 0.82-0.95, P < 0.001). LIMITATIONS, REASONS FOR CAUTION: Aside from the retrospective study design, limitations include allowing the embryologist to watch the time lapse video, potentially providing more information than a truly static morphological assessment. Furthermore, the embryologists at the participating centres were familiar with the significant variables in time lapse, which could bias the results. WIDER IMPLICATIONS OF THE FINDINGS: The present study shows that the use of morphokinetic models, namely PREFER and LB, translates into improved euploid embryo selection. STUDY FUNDING/COMPETING INTEREST(S): This study received no specific grant funding from any funding agency in the public, commercial or not-for-profit sectors. Dr Alison Campbell is minor share holder of Care Fertility. All other authors have no conflicts of interest to declare. Time lapse is a technology for which patients are charged extra at participating centres. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Blastocisto , Gravidez Múltipla , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Estudos de Coortes , Aneuploidia
12.
Glob Chang Biol ; 30(1): e17078, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273582

RESUMO

Microclimate-proximal climatic variation at scales of metres and minutes-can exacerbate or mitigate the impacts of climate change on biodiversity. However, most microclimate studies are temperature centric, and do not consider meteorological factors such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary tool to monitor wild plants and animals, even at micro-scales, and deep learning tools rapidly convert images into ecological data. However, deep learning applications for wildlife imagery have focused exclusively on living subjects. Here, we identify an overlooked opportunity to extract latent, ecologically relevant meteorological information. We produce an annotated image dataset of micrometeorological conditions across 49 wildlife cameras in South Africa's Maloti-Drakensberg and the Swiss Alps. We train ensemble deep learning models to classify conditions as overcast, sunshine, hail or snow. We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we show how effective accuracy is raised to 96% by disregarding 14.1% of classifications where ensemble member models did not reach a consensus. For two-class weather classification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, snow and hail in almost 2 million unlabelled images. Resulting micrometeorological data illustrated common seasonal patterns of summer hailstorms and autumn snowfalls across mountains in the northern and southern hemispheres. However, daily patterns of sunshine and shade diverged between sites, impacting daily temperature cycles. Crucially, we leverage micrometeorological data to demonstrate that (1) experimental warming using open-top chambers shortens early snow events in autumn, and (2) image-derived sunshine marginally outperforms sensor-derived temperature when predicting bumblebee foraging. These methods generate novel micrometeorological variables in synchrony with biological recordings, enabling new insights from an increasingly global network of wildlife cameras.


Assuntos
Animais Selvagens , Aprendizado Profundo , Animais , Humanos , Tempo (Meteorologia) , Neve , Biodiversidade
13.
Reprod Biol Endocrinol ; 22(1): 81, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010092

RESUMO

BACKGROUND: The occurrence of blastocyst collapse may become an indicator of preimplantation embryo quality assessment. It has been reported that collapsing blastocysts can lead to higher rates of aneuploidy and poorer clinical outcomes, but more large-scale studies are needed to explore this relationship. This study explored the characteristics of blastocyst collapse identified and quantified by artificial intelligence and explored the associations between blastocyst collapse and embryo ploidy, morphological quality, and clinical outcomes. METHODS: This observational study included data from 3288 biopsied blastocysts in 1071 time-lapse preimplantation genetic testing cycles performed between January 2019 and February 2023 at a single academic fertility center. All transferred blastocysts are euploid blastocysts. The artificial intelligence recognized blastocyst collapse in time-lapse microscopy videos and then registered the collapsing times, and the start time, the recovery duration, the shrinkage percentage of each collapse. The effects of blastocyst collapse and embryo ploidy, pregnancy, live birth, miscarriage, and embryo quality were studied using available data from 1196 euploid embryos and 1300 aneuploid embryos. RESULTS: 5.6% of blastocysts collapsed at least once only before the full blastocyst formation (tB), 19.4% collapsed at least once only after tB, and 3.1% collapsed both before and after tB. Multiple collapses of blastocysts after tB (times ≥ 2) are associated with higher aneuploid rates (54.6%, P > 0.05; 70.5%, P < 0.001; 72.5%, P = 0.004; and 71.4%, P = 0.049 in blastocysts collapsed 1, 2, 3 or ≥ 4 times), which remained significant after adjustment for confounders (OR = 2.597, 95% CI 1.464-4.607, P = 0.001). Analysis of the aneuploid embryos showed a higher ratio of collapses and multiple collapses after tB in monosomies and embryos with subchromosomal deletion of segmental nature (P < 0.001). Blastocyst collapse was associated with delayed embryonic development and declined blastocyst quality. There is no significant difference in pregnancy and live birth rates between collapsing and non-collapsing blastocysts. CONCLUSIONS: Blastocyst collapse is common during blastocyst development. This study underlined that multiple blastocyst collapses after tB may be an independent risk factor for aneuploidy which should be taken into account by clinicians and embryologists when selecting blastocysts for transfer.


Assuntos
Aneuploidia , Blastocisto , Transferência Embrionária , Diagnóstico Pré-Implantação , Blastocisto/fisiologia , Feminino , Humanos , Gravidez , Fatores de Risco , Adulto , Diagnóstico Pré-Implantação/métodos , Transferência Embrionária/métodos , Inteligência Artificial , Desenvolvimento Embrionário/fisiologia , Taxa de Gravidez , Técnicas de Cultura Embrionária/métodos , Imagem com Lapso de Tempo/métodos , Fertilização in vitro/métodos
14.
Reprod Biol Endocrinol ; 22(1): 58, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778410

RESUMO

BACKGROUND: The best method for selecting embryos ploidy is preimplantation genetic testing for aneuploidies (PGT-A). However, it takes more labour, money, and experience. As such, more approachable, non- invasive techniques were still needed. Analyses driven by artificial intelligence have been presented recently to automate and objectify picture assessments. METHODS: In present retrospective study, a total of 3448 biopsied blastocysts from 979 Time-lapse (TL)-PGT cycles were retrospectively analyzed. The "intelligent data analysis (iDA) Score" as a deep learning algorithm was used in TL incubators and assigned each blastocyst with a score between 1.0 and 9.9. RESULTS: Significant differences were observed in iDAScore among blastocysts with different ploidy. Additionally, multivariate logistic regression analysis showed that higher scores were significantly correlated with euploidy (p < 0.001). The Area Under the Curve (AUC) of iDAScore alone for predicting euploidy embryo is 0.612, but rose to 0.688 by adding clinical and embryonic characteristics. CONCLUSIONS: This study provided additional information to strengthen the clinical applicability of iDAScore. This may provide a non-invasive and inexpensive alternative for patients who have no available blastocyst for biopsy or who are economically disadvantaged. However, the accuracy of embryo ploidy is still dependent on the results of next-generation sequencing technology (NGS) analysis.


Assuntos
Aneuploidia , Blastocisto , Aprendizado Profundo , Diagnóstico Pré-Implantação , Humanos , Estudos Retrospectivos , Feminino , Diagnóstico Pré-Implantação/métodos , Adulto , Gravidez , Blastocisto/citologia , Testes Genéticos/métodos , Fertilização in vitro/métodos
15.
Reprod Biol Endocrinol ; 22(1): 27, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443941

RESUMO

PURPOSE: The introduction of the time-lapse monitoring system (TMS) and the development of predictive algorithms could contribute to the optimal embryos selection for transfer. Therefore, the present study aims at investigating the efficiency of KIDScore and iDAScore systems for blastocyst stage embryos in predicting live birth events. METHODS: The present retrospective study was conducted in a private IVF Unit setting throughout a 10-month period from October 2021 to July 2022, and included the analysis of 429 embryos deriving from 91 IVF/ICSI cycles conducted due to infertility of various etiologies. Embryos incubated at the Embryoscope+ timelapse incubator were analyzed through the established scoring systems: KIDScore and iDAScore®. The main outcome measure was the comparison of the two scoring systems in terms of live birth prediction. Embryos with the higher scores at day 5 (KID5 score/iDA5 score) were transferred or cryopreserved for later use. RESULTS: Embryos with high KID5 and iDA5 scores positively correlated with the probability of successful live birth, with KID5 score yielding a higher efficiency in predicting a successful reproductive outcome compared to a proportionally high iDA5 score. KID5 demonstrated conservative performance in successfully predicting live birth compared to iDA5 score, indicating that an efficient prediction can be either provided by a relatively lower KID5 score or a relatively higher iDA5 score. CONCLUSION: The developed artificial intelligence tools should be implemented in clinical practice in conjunction with the conventional morphological assessment for the conduction of optimized embryo transfer in terms of a successful live birth.


Assuntos
Inteligência Artificial , Nascido Vivo , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Embrião de Mamíferos , Gravidez Múltipla
16.
Reprod Biomed Online ; 49(1): 103887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701632

RESUMO

RESEARCH QUESTION: Could EMBRYOLY, an artificial intelligence embryo evaluation tool, assist embryologists to increase first cycle pregnancy rate and reduce cycles to pregnancy for patients? DESIGN: Data from 11,988 embryos were collected via EMBRYOLY from 2666 egg retrievals (2019-2022) across 11 centres in France, Spain and Morocco using three time-lapse systems (TLS). Data from two independent clinics were also examined. EMBRYOLY's transformer-based model was applied to transferred embryos to evaluate ranking performances against pregnancy and birth outcomes. It was applied to cohorts to rank sibling embryos (including non-transferred) according to their likelihood of clinical pregnancy and to compute the agreement with the embryologist's highest ranked embryo. Its effect on time to pregnancy and first cycle pregnancy rate was evaluated on cohorts with multiple single blastocyst transfers, assuming the embryologist would have considered EMBRYOLY's ranking on the embryos favoured for transfer. RESULTS: EMBRYOLY's score correlated significantly with clinical pregnancies and live births for cleavage and blastocyst transfers. This held true for clinical pregnancies from blastocyst transfers in two independent clinics. In cases of multiple single embryo transfers, embryologists achieved a 19.8% first cycle pregnancy rate, which could have been improved to 44.1% with the adjunctive use of EMBRYOLY (McNemar's test: P < 0.001). This could have reduced cycles to clinical pregnancy from 2.01 to 1.66 (Wilcoxon test: P < 0.001). CONCLUSIONS: EMBRYOLY's potential to enhance first cycle pregnancy rates when combined with embryologists' expertise is highlighted. It reduces the number of unsuccessful cycles for patients across TLS and IVF centres.


Assuntos
Inteligência Artificial , Transferência Embrionária , Taxa de Gravidez , Humanos , Feminino , Gravidez , Transferência Embrionária/métodos , Adulto , Fertilização in vitro/métodos , Irmãos
17.
Reprod Biomed Online ; 48(1): 103570, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952277

RESUMO

The Association for the Study of Reproductive Biology (ASEBIR) Interest Group in Embryology (in Spanish 'Grupo de Interés de Embriología') reviewed key morphokinetic parameters to assess the contribution of time-lapse technology (TLT) to the ASEBIR grading system. Embryo grading based on morphological characteristics is the most widely used method in human assisted reproduction laboratories. The introduction and implementation of TLT has provided a large amount of information that can be used as a complementary tool for morphological embryo evaluation and selection. As part of IVF treatments, embryologists grade embryos to decide which embryos to transfer or freeze. At the present, the embryo grading system developed by ASEBIR does not consider dynamic events observed through TLT. Laboratories that are using TLT consider those parameters as complementary data for embryo selection. The aim of this review was to evaluate review time-specific morphological changes during embryo development that are not included in the ASEBIR scoring system, and to consider them as candidates to add to the scoring system.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Humanos , Imagem com Lapso de Tempo/métodos , Transferência Embrionária/métodos , Biologia , Técnicas de Cultura Embrionária , Implantação do Embrião , Fertilização in vitro/métodos , Blastocisto
18.
Reprod Biomed Online ; 49(3): 104110, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38968730

RESUMO

RESEARCH QUESTION: Is there a relationship between the pronuclear axis and the first cleavage plane formation in human pronuclear-stage embryos, and what are the effects on ploidy and clinical pregnancy rates? DESIGN: Transferred embryos were followed up until their prognoses. A total of 762 embryos formed two cells and reached the blastocyst stage after normal fertilization in a time-lapse incubator. Embryos were classified into three groups: group A: embryos in which the first plane of division was formed parallel to the axis of the pronucleus; group B: embryos in which cases of oblique formation were observed; and group C: embryos in which cases of perpendicular formation were observed. RESULTS: The euploidy rate was significantly higher in groups A and B than those in group C (P < 0.01), whereas the aneuploidy rate was significantly higher in group C (P < 0.01) than in groups A and B. No differences were found between the three groups in frequency of positive HCG-based pregnancy tests, frequency of clinical pregnancies, miscarriage rates or delivery rates. CONCLUSIONS: The formation pattern of the first plane of division relative to the pronuclear axis was a predictor of embryonic ploidy, with a reduced rate of euploidy and a high probability of aneuploidy observed when the first plane of division was perpendicular to the pronuclear axis.

19.
J Microsc ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747391

RESUMO

Arbuscular mycorrhizal (AM) symbiosis, the nutritional partnership between AM fungi and most plant species, is globally ubiquitous and of great ecological and agricultural importance. Studying the processes of AM symbiosis is confounded by its highly spatiotemporally dynamic nature. While microscopy methods exist to probe the spatial side of this plant-fungal interaction, the temporal side remains more challenging, as reliable deep-tissue time-lapse imaging requires both symbiotic partners to remain undisturbed over prolonged time periods. Here, we introduce the AMSlide: a noninvasive, high-resolution, live-imaging system optimised for AM symbiosis research. We demonstrate the AMSlide's applications in confocal microscopy of mycorrhizal roots, from whole colonisation zones to subcellular structures, over timeframes from minutes to weeks. The AMSlide's versatility for different microscope set-ups, imaging techniques, and plant and fungal species is also outlined. It is hoped that the AMSlide will be applied in future research to fill in the temporal blanks in our understanding of AM symbiosis, as well as broader root and rhizosphere processes.

20.
Pharm Res ; 41(2): 387-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243127

RESUMO

OBJECTIVE: This study aims to establish a Flow-through Visualization Dissolution System (FVDS) that combines time-lapse macro-imaging and a flow-through cell to simultaneously elucidate dissolution and disintegration profiles. METHODS: Three cefaclor extended-release tablets (CEC-1, CEC-2, CEC-3) from different manufacturers were subjected to dissolution tests using both the US Pharmacopeia basket method and the FVDS method. Two dissolution media plans were implemented in FVDS: i) Plan I involved dissolution in pH1.0 medium for 12 h; ii) Plan II initiated dissolution in pH1.0 medium for 1 h, followed by pH6.8 phosphate buffer for 11 h. The resulting dissolution data were fitted using classic mathematical models. Pixel information was further extracted from images obtained using FVDS and plotted over time. RESULTS: The basket method showed the cumulative dissolution of all three tablets in pH1.0, pH4.0 and water reached 80% within 6 h, but remained below 60% in the pH6.8 medium. The f2 values indicated CEC-2 was similar to CEC-1 in the pH4.0 medium, pH6.8 medium and water. Using FVDS with medium plan II, the cumulative dissolution of CEC-1 and CEC-2 reached about 80% showing similarity, while no similarity was observed between CEC-3 and CEC-1. The f2 factor of the percentage area change profiles also showed consistent results in the dissolution profile of medium plan II. However, FVDS with medium plan I cannot distinguish between CEC-2 and CEC-3. CONCLUSION: FVDS offers an alternative to traditional dissolution methods by integrating imaging analysis as a complementary tool to disintegration and dissolution testing methods.


Assuntos
Processamento de Imagem Assistida por Computador , Água , Solubilidade , Imagem com Lapso de Tempo , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA