RESUMO
Free-standing tin phosphide/phosphate carbon composite nanofiber mats of unique nanostructure have been successfully synthesized by electrospinning and partially reducing the phosphate-containing precursors. An unusual effect of the Sn:P molar ratio in the precursor solution on the structure and physical-electrochemical properties of the material is observed. Physical characterizations, including X-Ray diffraction (XRD), Raman spectroscopy, X-Ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), confirm the formation of tin phosphide/phosphate nanoparticles of P-rich inner Snx P layer and Sn-rich outer layer uniformly distributed within carbon nanofiber matrix when the Sn:P=1:1. The prepared material is tested as an anode material for lithium-ion batteries and it retains 1141 mAh g-1 charge capacity after 300 cycles at a current density of 250 mA g-1 with almost 100% Coulombic efficiency at room temperature. Furthermore, it demonstrates six times higher capacity (846 mAh g-1 ) at 0 °C compared to a commercial graphite anode and stable cyclability at -20 °C and 50 mA g-1 . Post-mortem ex situ XRD and SEM analyses confirm the structural stability of the designed material and the formation of a uniform stable solid electrolyte interphase layer even after 100 cycles at 50 mA g- 1 .
RESUMO
Despite its high theoretical capacities, Sn4P3 anodes in alkali-ion batteries (AIBs) have been plagued by electrode damage and capacity decay during cycling, mainly rooted in the huge volume changes and irreversible phase segregation. However, few reports endeavor to ascertain whether these causes bear relevance to phase evolution upon cycling. Moreover, the phase evolution mechanism for alkali-ion intercalation remains imprecise. Herein, the structural transformations and detailed mechanisms upon various alkali-ion intercalation processes are systematically revealed, utilizing both experimental techniques and theoretical simulations. The results reveal that the energy storage of Sn4P3 occurs in a two-stage process, starting from an insertion process, followed by a transition process. As the cycle proceeds, the final delithiated/desodiated/depotassiated components gradually trap alkali ions (Li+, Na+, and K+), which is attributed to the incomplete electrochemical transition and difficulty in Sn4P3 regeneration due to the kinetic limitations in removing M (M = Li, Na, and K). Furthermore, Sn4P3 anode obeys the "shrinking core mechanism" in potassium-ion batteries (KIBs), wherein a minor fraction of Sn4P3 in the outer layer of the particles is initially involved in the potassiation/depotassiation processes, followed by a gradual participation of the inner parts until the entire particle is involved. It is worth mentioning that K-Sn alloys are not found to exist during the transition process of KIBs; instead, K-Sn-P phases are found, which makes it differ from that in lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs). These findings are expected to deepen the understanding of the reaction mechanism of Sn4P3 and enlighten the material designs for improved performance.
RESUMO
Sodium-ion battery (SIB) is one of potential alternatives to lithium-ion battery, because of abundant resources and lower price of sodium. High electrical conductivity and long-term durability of MXene are advantageous as the anode material of SIB, but low energy density restricts applications. Tin phosphide possesses high theoretical capacity, low redox potential, and large energy density, but volume expansion reduces its cycling stability. In this study, tin phosphide particles are in-situ encapsulated into MXene conductive networks (SnxPy/MXene) by hydrothermal and phosphorization processes as novel anode materials of SIB. MXene amounts and hydrothermal durations are investigated to evenly distribute SnxPy in MXene. After 100 cycles, SnxPy/MXene reaches high specific capacities of 438.8 and 314.1 mAh/g at 0.2 and 1.0 A/g, respectively. The capacity retentions of 6.0% and 73.6% at 0.2 A/g are respectively obtained by SnxPy and SnxPy/MXene. The better specific capacity and cycling stability of SnxPy/MXene are attributed to less volume expansion of SnxPy during charge/discharge processes and relieved self-stacking of MXene by encapsulating SnxPy particles between MXene layers. Electrochemical impedance spectroscopy and Galvanostatic intermittent titration technique are also applied to analyze the charge storage mechanism in SIB. Higher sodium ion diffusion coefficient and smaller charge-transfer resistance are obtained by SnxPy/MXene.
RESUMO
Cu4SnP10, a promising phosphide material for sodium-ion battery anode applications, suffers from poor cycling stability, and its mechanism remains unclear. This is largely due to the amorphous nature of the active materials upon cycling and its possible structural change at a small length scale (e.g., nanometers), making it difficult to access the phase/structural evolution of the electrode. In the present work, we show that the phase/structural change of the Cu4SnP10 nanowire electrode can be systematically investigated using a comprehensive set of ex situ transmission electron microscopy-based techniques, which are ideal for decay mechanism analysis of electrode materials of amorphous nature and with nanoscale structural evolution. The compositional elements of Cu4SnP10 nanowires are found to be spatially redistributed at a nanometer scale upon the initial sodiation, and this is partially reversible in the following desodiation process. Damage accumulates until a critical size of phase separation/segregation is reached, when the active material loss takes place, leading to fast deterioration of the entire Cu4SnP10 nanowire structure and thus its electrochemical performance. The phase segregation driven-active material loss is found to dominate the cycle-dependent capacity decay of the Cu4SnP10 nanowire electrode.
RESUMO
Water splitting using renewable energy resources is an economic and green approach that is immensely enviable for the production of high-purity hydrogen fuel to resolve the currently alarming energy and environmental crisis. One of the effective routes to produce green fuel with the help of an integrated solar system is to develop a cost-effective, robust, and bifunctional electrocatalyst by complete water splitting. Herein, we report a superhydrophilic layered leaflike Sn4P3 on a graphene-carbon nanotube matrix which shows outstanding electrochemical performance in terms of low overpotential (hydrogen evolution reaction (HER), 62 mV@10 mA/cm2, and oxygen evolution reaction (OER), 169 mV@20 mA/cm2). The outstanding stability of HER at least for 15 days at a high applied current density of 400 mA/cm2 with a minimum loss of potential (1%) in acid medium infers its potential compatibility toward the industrial sector. Theoretical calculations indicate that the decoration of Sn4P3 on carbon nanotubes modulates the electronic structure by creating a higher density of state near Fermi energy. The catalyst also reveals an admirable overall water splitting performance by generating a low cell voltage of 1.482 V@10 mA/cm2 with a stability of at least 65 h without obvious degradation of potential in 1 M KOH. It exhibited unassisted solar energy-driven water splitting when coupled with a silicon solar cell by extracting a high stable photocurrent density of 8.89 mA/cm2 at least for 90 h with 100% retention that demonstrates a high solar-to-hydrogen conversion efficiency of â¼10.82%. The catalyst unveils a footprint for pure renewable fuel production toward carbon-free future green energy innovation.
RESUMO
The high theoretical capacity makes metal phosphides appropriate anode candidates for Li-ion batteries, but their applications are restricted due to the limited structural instability caused by the huge volume change, as in other high-capacity materials. Here, we design an integrated electrode consisting of Sn4P3 nanoparticles sandwiched between transition-metal carbide (MXene) nanosheets. Tetramethylammonium hydroxide (TMAOH) plays an essential role in the formation of such sandwich structures by producing negatively charged MXene sheets with expanded layer spacings. The strong C-O-P oxygen bridge bond enables tight anchoring of Sn4P3 nanoparticles on the surface of MXene layers. The obtained Sn4P3-based nanocomposites exhibit high reversible capacity with an initial Coulombic efficiency of 82% and outstanding rate performance (1519 mAh cm-3 at a current density of 5 A g-1). The conductive and flexible MXene layers on both sides of Sn4P3 nanoparticles provide the desired electric conductivity and elastomeric space to accommodate the large volume change of Sn4P3 during lithiation. Therefore, the Sn4P3@MXene hybrid exhibits an enhanced cyclic performance of 820 mAh g-1 after 300 cycles at a current density of 1 A g-1.
RESUMO
Recently, Sn4P3 has emerged as a promising anode for sodium-ion batteries (SIBs) due to the high specific capacity. However, the use of Sn4P3 has been impeded by capacity fade and an inferior rate performance. Herein, a biomimetic heterostructure is reported by using a simple hydrothermal reaction followed by thermal treatment. This bottlebrush-like structure consists of a stem-like carbon nanotube (CNT) as the electron expressway and mechanical support; fructus-like Sn4P3 nanoparticles as the active material; and the permeable stoma-like thin carbon coating as the buffer layer. Having benefited from the biomimetic structure, a superior electrochemical performance is obtained in the SIBs. It exhibits a high capacity of 742 mA h g-1 after 150 cycles at 0.2C, and superior rate performance with 449 mA h g-1 at 2C after 500 cycles. Moreover, the sodium storage mechanism is confirmed by cyclic voltammetry and ex situ X-ray diffraction and transmission electron microscopy. In situ electrochemical impedance spectroscopy was adopted to analyze the reaction dynamics. This research represents a further step toward figuring out the inferior electrochemical performance of other metal phosphide materials.
RESUMO
We fabricated tin phosphide-carbon (Sn4P3/C) composite film by aerosol deposition (AD) and investigated its electrochemical performance for a lithium-ion battery anode. Sn4P3/C composite powders prepared by a ball milling was used as raw material and deposited onto a stainless steel substrate to form the composite film via impact consolidation. The Sn4P3/C composite film fabricated by AD showed much better electrochemical performance than the Sn4P3 film without complexing carbon. Although both films showed initial discharge (Li+ extraction) capacities of approximately 1000 mAh g-1, Sn4P3/C films retained higher reversible capacity above 700 mAh g-1 after 100 cycles of charge and discharge processes while the capacity of Sn4P3 film rapidly degraded with cycling. In addition, by controlling the potential window in galvanostatic testing, Sn4P3/C composite film retained the reversible capacity of 380 mAh g-1 even after 400 cycles. The complexed carbon works not only as a buffer to suppress the collapse of electrodes by large volume change of Sn4P3 in charge and discharge reactions but also as an electronic conduction path among the atomized active material particles in the film.
RESUMO
Sn4+x P3 @ amorphous Sn-P composites are a promising cheap anode material for sodium-ion batteries with high capacity (502 mA h g(-1) at a current density of 100 mA g(-1)), long cycling stability (92.6% capacity retention up to 100 cycles), and high rate capability (165 mA h g(-1) at the 10C rate).
RESUMO
Sn4 P3 is introduced for the first time as an anode material for Na-ion batteries. Sn4 P3 delivers a high reversible capacity of 718 mA h g(-1), and shows very stable cycle performance with negligible capa-city fading over 100 cycles, which is attributed to the confinement effect of Sn nanocrystallites in the amorphous phosphorus matrix during cycling.