Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Small ; : e2403322, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898720

RESUMO

Mineralized bio-tissues achieve exceptional mechanical properties through the assembly of rigid inorganic minerals and soft organic matrices, providing abundant inspiration for synthetic materials. Hydrogels, serving as an ideal candidate to mimic the organic matrix in bio-tissues, can be strengthened by the direct introduction of minerals. However, this enhancement often comes at the expense of toughness due to interfacial mismatch. This study reveals that extreme toughening of hydrogels can be realized through simultaneous in situ mineralization and salting-out, without the need for special chemical modification or additional reinforcements. The key to this strategy lies in harnessing the kosmotropic and precipitation behavior of specific anions as they penetrate a hydrogel system containing both anion-sensitive polymers and multivalent cations. The resulting mineralized hydrogels demonstrate significant improvements in fracture stress, fracture energy, and fatigue threshold due to a multiscale energy dissipation mechanism, with optimal values reaching 12 MPa, 49 kJ m-2, and 2.98 kJ m-2. This simple strategy also proves to be generalizable to other anions, resulting in tough hydrogels with osteoconductivity for promoting in vitro mineralization of human adipose-derived mesenchymal stem cells. This work introduces a universal route to toughen hydrogels without compromising other parameters, holding promise for biological applications demanding integrated mechanical properties.

2.
Small ; 20(25): e2310046, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183373

RESUMO

Hydrogels are widely used in tissue engineering, soft robotics and wearable electronics. However, it is difficult to achieve both the required toughness and stiffness, which severely hampers their application as load-bearing materials. This study presents a strategy to develop a hard and tough composite hydrogel. Herein, flexible SiO2 nanofibers (SNF) are dispersed homogeneously in a polyvinyl alcohol (PVA) matrix using the synergistic effect of freeze-drying and annealing through the phase separation, the modulation of macromolecular chain movement and the promotion of macromolecular crystallization. When the stress is applied, the strong molecular interaction between PVA and SNF effectively disperses the load damage to the substrate. Freeze-dried and annealed-flexible SiO2 nanofibers/polyvinyl alcohol (FDA-SNF/PVA) reaches a preferred balance between enhanced stiffness (13.71 ± 0.28 MPa) and toughness (9.9 ± 0.4 MJ m-3). Besides, FDA-SNF/PVA hydrogel has a high tensile strength of 7.84 ± 0.10 MPa, super elasticity (no plastic deformation under 100 cycles of stretching), fast deformation recovery ability and excellent mechanical properties that are superior to the other tough PVA hydrogels, providing an effective way to optimize the mechanical properties of hydrogels for potential applications in artificial tendons and ligaments.

3.
Macromol Rapid Commun ; 45(7): e2300650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158795

RESUMO

Double-network hydrogels based on calcium alginate are extensively exploited. Unfortunately, their low strength and unstable constitution to open environments limit their application potential. Herein, a new type of double-network organohydrogel (OHG) is proposed. By solvent exchange, a stable physical network is established based on dimethyl sulfoxide (DMSO)-alginate in the presence of a polyacrylamide network. The DMSO content endows tunable mechanical properties, with a maximum tensile strength of ≈1.7 MPa. Importantly, the OHG shows much better environmental stability compared to the conventional double-network hydrogels. Due to the reversible association of hydrogen bonds, the OHG possesses some unique properties, including free-shapeability, shape-memory, and self-adhesion, that offers several promising ways to utilize alginate-based gels for wide applications.


Assuntos
Alginatos , Dimetil Sulfóxido , Solventes , Hidrogéis , Ligação de Hidrogênio
4.
Int J Solids Struct ; 286-2872024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38130319

RESUMO

Fibrous gels such as cartilage, blood clots, and carbon-nanotube-based sponges with absorbed oils suffer a reduction in volume by the expulsion of liquid under uniaxial tension, and this directly affects crack-tip fields and energy release rates. A continuum model is formulated for isotropic fibrous gels that exhibit a range of behaviors from volume increasing to volume decreasing in uniaxial tension by changing the ratio of two material parameters. The motion of liquid in the pores of such gels is modeled using poroelasticity. The direction of liquid fluxes around cracks is shown to depend on whether the gel locally increases or decreases in volume. The energy release rate for cracks is computed using a surface-independent integral and it is shown to have two contributions - one from the stresses in the solid network, and another from the flow of liquid. The contribution to the integral from liquid permeation tends to be negative when the gel exhibits volume decrease, which effectively is a crack shielding mechanism.

5.
Nano Lett ; 23(8): 3352-3361, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052245

RESUMO

Natural materials teach that mechanical dissipative interactions relieve the conflict between strength and toughness and enable fabrication of strong yet tough artificial materials. Replicating natural nacre structure has yielded rich biomimetic materials; however, stronger interlayer dissipation still waits to be exploited to extend the performance limits of artificial nacre materials. Here, we introduce strong entanglement as a new artificial interlayer dissipative mechanism and fabricate entangled nacre materials with superior strength and toughness, across molecular to nanoscale nacre structures. The entangled graphene nacre fibers achieved high strength of 1.2 GPa and toughness of 47 MJ/m3, and films reached 1.5 GPa and 25 MJ/m3. Experiments and simulations reveal that strong entanglement can effectively dissipate interlayer energy to relieve the conflict between strength and toughness, acting as natural folded proteins. The strong interlayer entanglement opens up a new path for designing stronger and tougher artificial materials to mimic but surpass natural materials.

6.
Molecules ; 29(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893416

RESUMO

Being a bio-sourced and biodegradable polymer, polylactic acid (PLA) has been considered as one of the most promising substitutes for petroleum-based plastics. However, its wide application is greatly limited by its very poor ductility, which has driven PLA-toughening modifications to be a topic of increasing research interest in the past decade. Toughening enhancement is achieved often at the cost of a large sacrifice in strength, with the toughness-strength trade-off having remained as one of the main bottlenecks of PLA modification. In the present study, a bio-elastomeric material of epoxidized soybean oil (ESO) crosslinked with sebacic acid (SA) and enhanced by graphene oxide (GO) nanoparticles (NPs) was employed to toughen PLA with the purpose of simultaneously preserving strength and achieving additional functions. The even dispersion of GO NPs in ESO was aided by ultrasonication and guaranteed during the following ESO-SA crosslinking with GO participating in the carboxyl-epoxy reaction with both ESO and SA, resulting in a nanoparticle-enhanced and dynamically crosslinked elastomer (GESO) via a ß-hydroxy ester. GESO was then melt-blended with PLA, with the interfacial reaction between ESO and PLA offering good compatibility. The blend morphology, and thermal and mechanical properties, etc., were evaluated and GESO was found to significantly toughen PLA while preserving its strength, with the GO loading optimized at ~0.67 wt%, which gave an elongation at break of ~274.5% and impact strength of ~10.2 kJ/m2, being 31 times and 2.5 times higher than pure PLA, respectively. Moreover, thanks to the presence of dynamic crosslinks and GO NPs, the PLA-GESO blends exhibited excellent shape memory effect and antistatic properties.

7.
Angew Chem Int Ed Engl ; : e202408840, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38927000

RESUMO

Structural adhesives that do not require heating are in high demand in the automotive and electronics industries. However, it remains a challenge to develop robust adhesives that rapidly achieve super adhesion near ambient temperature. Herein, a room-temperature curable, fast-bonding, and super strong epoxy-based structural adhesive was designed from the perspective of cross-scale structure, which lies in threefold pivotal aspects: (i) high branching topology of glycerol carbonate-capped polyurethane (PUGC) increases the kinetics of the ring-opening reaction, contributing to fast crosslinking and the formation of abundant urethane and hydroxyl moieties; (ii) asynchronous crosslinking of epoxy and PUGC synergistically induces phase separation of PUGC within the epoxy resin and the resulting PUGC domains surrounded by interpenetrated shell serves to efficiently toughen the matrix; (iii) abundant dynamic hydrogen bonds including urethane and hydroxyl moieties, along with the elastomeric PUGC domains, dissipate energy of shearing force. As a result, the adhesive strength rapidly grows to 16 MPa within 4 hours, leveling off to 21 MPa after 7 hours, substantially outperforming commercial room-temperature curable epoxy adhesives. The results of this study could advance the field of high-performance adhesives and provide valuable insights into designing materials for efficient curing at room temperature.

8.
Angew Chem Int Ed Engl ; 63(28): e202404481, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38699952

RESUMO

The pursuit of fabricating high-performance graphene films has aroused considerable attention due to their potential for practical applications. However, developing both stretchable and tough graphene films remains a formidable challenge. To address this issue, we herein introduce mechanical bond to comprehensively improve the mechanical properties of graphene films, utilizing [2]rotaxane as the bridging unit. Under external force, the [2]rotaxane cross-link undergoes intramolecular motion, releasing hidden chain and increasing the interlayer slip distance between graphene nanosheets. Compared with graphene films without [2]rotaxane cross-linking, the presence of mechanical bond not only boosted the strength of graphene films (247.3 vs 74.8 MPa) but also markedly promoted the tensile strain (23.6 vs 10.2 %) and toughness (23.9 vs 4.0 MJ/m3). Notably, the achieved tensile strain sets a record high and the toughness surpasses most reported results, rendering the graphene films suitable for applications as flexible electrodes. Even when the films were stretched within a 20 % strain and repeatedly bent vertically, the light-emitting diodes maintained an on-state with little changes in brightness. Additionally, the film electrodes effectively actuated mechanical joints, enabling uninterrupted grasping movements. Therefore, the study holds promise for expanding the application of graphene films and simultaneously inspiring the development of other high-performance two-dimensional films.

9.
Proc Natl Acad Sci U S A ; 117(27): 15465-15472, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571926

RESUMO

Bioinspired architectural design for composites with much higher fracture resistance than that of individual constituent remains a major challenge for engineers and scientists. Inspired by the survival war between the mantis shrimps and abalones, we design a discontinuous fibrous Bouligand (DFB) architecture, a combination of Bouligand and nacreous staggered structures. Systematic bending experiments for 3D-printed single-edge notched specimens with such architecture indicate that total energy dissipations are insensitive to initial crack orientations and show optimized values at critical pitch angles. Fracture mechanics analyses demonstrate that the hybrid toughening mechanisms of crack twisting and crack bridging mode arising from DFB architecture enable excellent fracture resistance with crack orientation insensitivity. The compromise in competition of energy dissipations between crack twisting and crack bridging is identified as the origin of maximum fracture energy at a critical pitch angle. We further illustrate that the optimized fracture energy can be achieved by tuning fracture energy of crack bridging, pitch angles, fiber lengths, and twist angles distribution in DFB composites.

10.
Nano Lett ; 22(1): 188-195, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941273

RESUMO

We investigated the role of graphene interfaces in strengthening and toughening of the Cu-graphene nanocomposite by a combination of in situ transmission electron microscopy (TEM) deformation and molecular dynamics (MD) simulations. In situ TEM directly showed that dislocation plasticity is strongly confined within single Cu grains by the graphene interfaces and grain boundaries. The weak Cu-graphene interfacial bonding induces stress decoupling, which results in independent plastic deformation of each Cu layer. As confirmed by the MD simulation, the localized deformation made by such constrained dislocation plasticity results in the nucleation and growth of voids at the graphene interface, which acts as a precursor for crack. The graphene interfaces also effectively block crack propagation promoted by easy delamination of Cu layers dissipating the elastic strain energy. The toughening mechanisms revealed by the present study will provide valuable insights into the optimization of the mechanical properties of metal-graphene nanolayered composites.

11.
Nano Lett ; 22(12): 4979-4984, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35639704

RESUMO

The traditional hardness-toughness tradeoff poses a substantial challenge for the development of superhard materials. Due to strong covalent bonds and intrinsic brittleness, the full advantage of microstructure engineering for enhanced mechanical properties requires further exploration in superhard materials. Here heterogeneous diamond-cBN composites were synthesized from a carefully prepared precursor (hBN microflakes uniformly wrapped by onion carbon nanoparticles) through phase transitions under high pressure and high temperature. The synthesized composites inherit the architecture of the precursors: cBN regions with an anisotropic profile that spans several micrometers laterally and several hundred nanometers in thickness are embedded in a nanograined diamond matrix with high-density nanotwins. A significantly high fracture toughness of 16.9 ± 0.8 MPa m1/2 is achieved, far beyond those of single-crystal diamond and cBN, without sacrificing hardness. A detailed TEM analysis revealed multiple toughening mechanisms closely related to the microstructure. This work sheds light on microstructure engineering in superhard materials for excellent mechanical properties.

12.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047298

RESUMO

With the tendency of thermoelectric semiconductor devices towards miniaturization, integration, and flexibility, there is an urgent need to develop high-performance thermoelectric materials. Compared with the continuously enhanced thermoelectric properties of thermoelectric materials, the understanding of toughening mechanisms lags behind. Recent advances in thermoelectric materials with novel crystal structures show intrinsic ductility. In addition, some promising toughening strategies provide new opportunities for further improving the mechanical strength and ductility of thermoelectric materials. The synergistic mechanisms between microstructure-mechanical performances are expected to show a large set of potential applications in flexible thermoelectric devices. This review explores enlightening research into recent intrinsically ductile thermoelectric materials and promising toughening strategies of thermoelectric materials to elucidate their applications in the field of flexible thermoelectric devices.


Assuntos
Semicondutores , Miniaturização , Resistência à Tração
13.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047390

RESUMO

Lignin has many potential applications and is a biopolymer with a three-dimensional network structure. It is composed of three phenylpropane units, p-hydroxyphenyl, guaiacyl, and syringyl, connected by ether bonds and carbon-carbon bonds, and it contains a large number of phenol or aldehyde structural units, resulting in complex lignin structures. This limits the application of lignin. To expand the application range of lignin, we prepared lignin thermoplastic phenolic resins (LPRs) by using lignin instead of phenol; these LPRs had molecular weights of up to 1917 g/mol, a molecular weight distribution of 1.451, and an O/P value of up to 2.73. Due to the complex structure of the lignin, the synthetic lignin thermoplastic phenolic resins were not very tough, which greatly affected the performance of the material. If the lignin phenolic resins were toughened, their application range would be substantially expanded. Polybutylene succinate (PBS) has excellent processability and excellent mechanical properties. The toughening effects of different PBS contents in the LPRs were investigated. PBS was found to be compatible with the LPRs, and the flexible chain segments of the small PBS molecules were embedded in the molecular chain segments of the LPRs, thus reducing the crystallinities of the LPRs. The good compatibility between the two materials promoted hydrogen bond formation between the PBS and LPRs. Rheological data showed good interfacial bonding between the materials, and the modulus of the high-melting PBS made the LPRs more damage resistant. When PBS was added at 30%, the tensile strength of the LPRs was increased by 2.8 times to 1.65 MPa, and the elongation at break increased by 31 times to 93%. This work demonstrates the potential of lignin thermoplastic phenolic resins for industrial applications and provides novel concepts for toughening biobased aromatic resins with PBS.


Assuntos
Materiais Biocompatíveis , Lignina , Lignina/química , Materiais Biocompatíveis/química , Fenóis , Resinas Sintéticas
14.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762362

RESUMO

Developing highly efficient and multifunctional epoxy resins (EPs) that overcome the shortcomings of flammability and brittleness is crucial for pursuing sustainable and safe application but remains a huge challenge. In this paper, a novel biomass-containing intumescent flame retardant containing a rigid-flexible and multi-siloxane bridge structure (DPB) was synthesized using siloxane; 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO); and biomass vanillin. DPB could facilitate the formation of a carbon residual with an intumescent structure, which effectively blocked the propagation of heat and oxygen. As a result, the peak heat release rate (pHRR) and total heat release (THR) of DPB/EP-7.5 decreased by 38.8% and 45.0%, respectively. In terms of mechanical properties, the tensile and flexural elongations at break of DPB/EP-7.5 increased by 77.2% and 105.3%, respectively. Impressively, DPB/EP-7.5 had excellent dielectric properties, with a dielectric constant of 2.5-2.9. This was due to the Si-O bonds (multi-siloxane bridges) contained in DPB/EP, which can quench the polarization behavior of the hydroxyl group. This paper provides a facile strategy for the preparation of multifunctional EP, which will pave the way for the promotion and application of EP in the high-end field.


Assuntos
Resinas Epóxi , Siloxanas , Animais , Biomassa , Carbono , Estro
15.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985799

RESUMO

Rapidly developing technology places higher demands on materials, thus the simultaneous improvement of materials' multiple properties is a hot research topic. In this work, a high-branched silicone epoxy resin (QSiE) was synthesized and applied to the curing system of bisphenol A epoxy resin (DGEBA) for modification investigations. When 6 wt% QSiE was added to the system, the viscosity dropped by 51.8%. The mechanical property testing results indicated that QSiE could significantly enhance the material's toughness while preserving good rigidity. The impact strength was enhanced by 1.31 times when 6wt% of QSiE was introduced. Additionally, the silicon skeleton in QSiE has low surface energy and low polarizability, which could endow the material with good hydrophobic and dielectric properties. This work provided a new idea for the preparation of high-performance epoxy resin additives, and provided a broad prospect for cutting-edge applications of epoxy resins.

16.
J Synchrotron Radiat ; 29(Pt 3): 775-786, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511010

RESUMO

The structure and mechanical properties of the stomatopod dactyl club have been studied extensively for its extreme impact tolerance, but a systematic in situ investigation on the multiscale mechanical responses under high-speed impact has not been reported. Here the full dynamic deformation and crack evolution process within projectile-impacted dactyl using combined fast 2D X-ray imaging and high-resolution ex situ tomography are revealed. The results show that hydration states can lead to significantly different toughening mechanisms inside dactyl under dynamic loading. A previously unreported 3D interlocking structural design in the impact surface and impact region is reported using nano X-ray tomography. Experimental results and dynamic finite-element modeling suggest this unique structure plays an important role in resisting catastrophic structural damage and hindering crack propagation. This work is a contribution to understanding the key toughening strategies of biological materials and provides valuable information for biomimetic manufacturing of impact-resistant materials in general.


Assuntos
Crustáceos , Casco e Garras , Tomografia Computadorizada por Raios X , Animais , Fenômenos Biomecânicos , Crustáceos/anatomia & histologia , Crustáceos/fisiologia , Casco e Garras/anatomia & histologia , Casco e Garras/diagnóstico por imagem , Casco e Garras/fisiologia , Fenômenos Mecânicos , Estresse Mecânico
17.
Macromol Rapid Commun ; 43(2): e2100619, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34662467

RESUMO

Bio-based and biodegradable polymer composites, most notably poly(l-lactic acid) (PLLA) and poly(3-hydroxybutyrate) (PHB), represent a promising solution to replace conventional petroleum-based plastics. However, the brittleness and low miscibility of PLLA and PHB remain two major obstacles to practical applications. In this work, first PLLA/PHB blends are reported by melt mixing with a rigid component, poly(methyl methacrylate) (PMMA). Driven by favorable entropy, PMMA forms an interfacial nanolayer, which transforms the morphology of resultant blends. The ternary blends show 55-fold increase in elongation, 50-fold in toughness, and metal-like malleability (≈180° bending and twisting), while retaining its high stiffness (3.4 GPa) and strength (≈50 MPa). The mechanical improvement arises from numerous craze fibrils and shear deformation of the matrix, induced by the incorporated PMMA. Furthermore, this generic strategy can be applied to design other mechanically robust biocomposites for advanced green devices.


Assuntos
Poliésteres , Polímeros , Polimetil Metacrilato
18.
Macromol Rapid Commun ; 43(15): e2200075, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35436378

RESUMO

Hydrogels are a fascinating class of materials popular in numerous fields, including tissue engineering, drug delivery, soft robotics, and sensors, thanks to their 3D network porous structure containing a significant amount of water. However, traditional hydrogels exhibit poor mechanical strength, limiting their practical applications. Thus, many researchers have focused on the development of mechanically enhanced hydrogels. This review describes the design considerations for constructing tough hydrogels and some of the latest strategies in recent years. These tough hydrogels have an up-and-coming prospect and bring great hope to the fields of biomedicine and others. Nonetheless, it is still no small challenge to realize hydrogel materials that are tough, multifunctional, intelligent, and with zero defects.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Porosidade
19.
Molecules ; 27(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35268800

RESUMO

The aim of this article is to comprehensively review the revolution of dental zirconia (Zir), including its types, properties, applications, and cementation procedures. A comprehensive search of PubMed and Embase was conducted. The search was limited to manuscripts published in English. The final search was conducted in October 2021. Newly developed monolithic Zir ceramics have substantially enhanced esthetics and translucency. However, this material must be further studied in vitro and in vivo to determine its long-term ability to maintain its exceptional properties. According to the literature, monolithic translucent Zir has had promising results and a high survival rate. Thus, the utilization of this material is indicated when strength and esthetics are needed. Both the materials and methods used for cementation of monolithic Zir have significantly improved, encouraging dentists to use this material, especially when a conservative approach is required. Zir restorations showed promising outcomes, particularly for monolithic Zir crowns supported with implant and fixed dental prostheses.


Assuntos
Zircônio
20.
Macromol Rapid Commun ; 42(4): e2000617, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33491847

RESUMO

It is of great significance to circumvent the inherent trade-off between strength and extensibility for epoxy resins. Herein dynamic Cu-benzotriazole cross-links are incorporated, as the appropriate intermolecular coordination interaction, into high performance epoxy networks, and the resulting epoxy resins exhibits outstanding thermal stability and mechanical properties, their strength and extensibility are simultaneously improved. Additionally, local manipulation of coordination crosslinking confers the film with anti-counterfeiting function.


Assuntos
Resinas Epóxi , Polímeros , Triazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA