Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Biol Eng ; 36(5): 644-650, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853415

RESUMO

We developed a technique for measuring patient limb occlusion pressure (LOP) through a tourniquet cuff that overcomes many limitations of existing LOP measurement techniques. The purpose of the study is to determine whether the LOP measured by the proposed technique is statistically or clinically different from that measured by the gold standard Doppler ultrasound technique. The study used randomized crossover multicenter trials. 143 pre- and post-surgical patients with a mean age of 54 years (range 17-86 years) were enrolled in the study. Pneumatic cuffs were applied to the non-operative upper and lower limbs and LOP was measured using the proposed technique and the Doppler ultrasound technique. From a total of 252 usable measurements for each technique (134 for upper limbs and 118 for lower limbs), the mean difference in LOP between the two techniques was 1 ± 8 mmHg for the upper limbs, 0 ± 15 mmHg for the lower limbs, and 1 ± 12 mmHg overall. The differences between the proposed technique and the Doppler technique were neither statistically nor clinically significant. The simplicity, effectiveness, and accuracy of the proposed technique should lead to broader clinical usage and acceptance of LOP measurement, thus leading to safer, personalized pressures in surgical tourniquet applications.

2.
BMC Biomed Eng ; 3(1): 8, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964963

RESUMO

BACKGROUND: Development of automatic, pneumatic tourniquet technology and use of personalised tourniquet pressures has improved the safety and accuracy of surgical tourniquet systems. Personalisation of tourniquet pressure requires accurate measurement of limb occlusion pressure (LOP), which can be measured automatically through two different methods. The 'embedded LOP' method measures LOP using a dual-purpose tourniquet cuff acting as both patient sensor and pneumatic effector. The 'distal LOP' method measures LOP using a distal sensor applied to the patient's finger or toe of the operating limb, using photoplethysmography to detect volumetric changes in peripheral blood circulation. The distal LOP method has been used clinically for many years; the embedded LOP method was developed recently with several advantages over the distal LOP method. While both methods have clinically acceptable accuracy in comparison to LOP measured using the manual Doppler ultrasound method, these two automatic methods have not been directly compared. The purpose of this study is to investigate if the embedded and distal methods of LOP measurement have clinically acceptable agreement. The differences in pairs of LOP measurement in the upper and lower limbs of 81 healthy individuals were compared using modified Bland and Altman analysis. In surgery, it is common for cuff pressure to deviate from the pressure setpoint due to limb manipulation. Surgical tourniquet systems utilise a ± 15 mmHg pressure alarm window, whereby if the cuff pressure deviates from the pressure setpoint by > 15 mmHg, an audiovisual alarm is triggered. Therefore, if the difference (bias) ± SE, 95% CI of the bias and SD of differences ± SE in LOP measurement between the embedded and distal methods were all within ±15 mmHg, this would demonstrate that the two methods have clinically acceptable agreement. RESULTS: LOP measurement using the embedded LOP method was - 0.81 ± 0.75 mmHg (bias ± standard error) lower than the distal LOP method. The 95% confidence interval of the bias was - 2.29 to 0.66 mmHg. The standard deviation of the differences ± standard error was 10.35 ± 0.49 mmHg. These results show that the embedded and distal methods of LOP measurement demonstrate clinically acceptable agreement. CONCLUSIONS: The findings of this study demonstrate clinically acceptable agreement between the embedded and distal methods of LOP measurement. The findings support the use of the embedded LOP method of automatic LOP measurement using dual-purpose tourniquet cuffs to enable accurate, effective and simple prescription of personalised tourniquet cuff pressures in a clinical setting.

3.
AORN J ; 106(3): 219-226, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28865632

RESUMO

Pneumatic tourniquets are commonly used in surgeries involving the limbs to achieve a nearly bloodless surgery and an optimal operating field or when administering regional anesthesia during surgery on a limb. Complications can arise from the use of tourniquets, including nerve injuries, pain, compartment syndrome, pressure injuries, chemical burns, and tissue necrosis. More serious injuries-including deep vein thrombosis, thermal damage to tissues, severe ischemic injuries, and rhabdomyolysis-also can occur. Therefore, it is important for perioperative team members to understand how to use pneumatic tourniquets effectively and safely to provide the best possible care to patients. This article addresses the safety risks to patients when using pneumatic tourniquets and optimal safe use of these devices.


Assuntos
Salas Cirúrgicas , Segurança do Paciente , Torniquetes/efeitos adversos , Torniquetes/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA