Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Brain ; 146(12): 5139-5152, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527465

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative diseases that represent ends of the spectrum of a single disease. The most common genetic cause of FTD and ALS is a hexanucleotide repeat expansion in the C9orf72 gene. Although epidemiological data suggest that traumatic brain injury (TBI) represents a risk factor for FTD and ALS, its role in exacerbating disease onset and course remains unclear. To explore the interplay between traumatic brain injury and genetic risk in the induction of FTD/ALS pathology we combined a mild repetitive traumatic brain injury paradigm with an established bacterial artificial chromosome transgenic C9orf72 (C9BAC) mouse model without an overt motor phenotype or neurodegeneration. We assessed 8-10 week-old littermate C9BACtg/tg (n = 21), C9BACtg/- (n = 20) and non-transgenic (n = 21) mice of both sexes for the presence of behavioural deficits and cerebral histopathology at 12 months after repetitive TBI. Repetitive TBI did not affect body weight gain, general neurological deficit severity, nor survival over the 12-month observation period and there was no difference in rotarod performance, object recognition, social interaction and acoustic characteristics of ultrasonic vocalizations of C9BAC mice subjected to repetitive TBI versus sham injury. However, we found that repetitive TBI increased the time to the return of the righting reflex, reduced grip force, altered sociability behaviours and attenuated ultrasonic call emissions during social interactions in C9BAC mice. Strikingly, we found that repetitive TBI caused widespread microglial activation and reduced neuronal density that was associated with loss of histological markers of axonal and synaptic integrity as well as profound neuronal transactive response DNA binding protein 43 kDa mislocalization in the cerebral cortex of C9BAC mice at 12 months; this was not observed in non-transgenic repetitive TBI and C9BAC sham mice. Our data indicate that repetitive TBI can be an environmental risk factor that is sufficient to trigger FTD/ALS-associated neuropathology and behavioural deficits, but not paralysis, in mice carrying a C9orf72 hexanucleotide repeat expansion.


Assuntos
Esclerose Lateral Amiotrófica , Concussão Encefálica , Proteína C9orf72 , Demência Frontotemporal , Doença de Pick , Animais , Feminino , Masculino , Camundongos , Esclerose Lateral Amiotrófica/genética , Concussão Encefálica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Camundongos Transgênicos
2.
Neurobiol Dis ; 154: 105360, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812000

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Esclerose Lateral Amiotrófica/genética , Animais , Autofagia/fisiologia , Demência Frontotemporal/genética , Humanos , Lisossomos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
3.
Neuropathol Appl Neurobiol ; 47(2): 328-345, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32949047

RESUMO

AIM: Granulovacuolar degeneration (GVD) in Alzheimer's disease (AD) involves the necrosome, which is a protein complex consisting of phosphorylated receptor-interacting protein kinase 1 (pRIPK1), pRIPK3 and phosphorylated mixed lineage kinase domain-like protein (pMLKL). Necrosome-positive GVD was associated with neuron loss in AD. GVD was recently linked to the C9ORF72 mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with transactive response DNA-binding protein (TDP-43) pathology (FTLD-TDP). Therefore, we investigated whether GVD in cases of the ALS-FTLD-TDP spectrum (ALS/FTLD) shows a similar involvement of the necrosome as in AD, and whether it correlates with diagnosis, presence of protein aggregates and cell death in ALS/FTLD. METHODS: We analysed the presence and distribution of the necrosome in post-mortem brain and spinal cord of ALS and FTLD-TDP patients (n = 30) with and without the C9ORF72 mutation, and controls (n = 22). We investigated the association of the necrosome with diagnosis, the presence of pathological protein aggregates and neuronal loss. RESULTS: Necrosome-positive GVD was primarily observed in hippocampal regions of ALS/FTLD cases and was associated with hippocampal TDP-43 inclusions as the main predictor of the pMLKL-GVD stage, as well as with the Braak stage of neurofibrillary tangle pathology. The central cortex and spinal cord, showing motor neuron loss in ALS, were devoid of any accumulation of pRIPK1, pRIPK3 or pMLKL. CONCLUSIONS: Our findings suggest a role for hippocampal TDP-43 pathology as a contributor to necrosome-positive GVD in ALS/FTLD. The absence of necroptosis-related proteins in motor neurons in ALS argues against a role for necroptosis in ALS-related motor neuron death.


Assuntos
Demência Frontotemporal/patologia , Hipocampo/patologia , Necroptose/fisiologia , Degeneração Neural/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medula Espinal/patologia
4.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830093

RESUMO

Traumatic brain injury (TBI) is a disabling disorder and a major cause of death and disability in the world. Both single and repetitive traumas affect the brain acutely but can also lead to chronic neurodegenerative changes. Clinical studies have shown some dissimilarities in transactive response DNA binding protein 43 (TDP-43) expression patterns following single versus repetitive TBI. We explored the acute cortical post-traumatic changes of TDP-43 using the lateral fluid percussion injury (LFPI) model of single moderate TBI in adult male mice and investigated the association of TDP-43 with post-traumatic neuroinflammation and synaptic plasticity. In the ipsilateral cortices of animals following LFPI, we found changes in the cytoplasmic and nuclear levels of TDP-43 and the decreased expression of postsynaptic protein 95 within the first 3 d post-injury. Subacute pathological changes of TDP-43 in the hippocampi of animals following LFPI and in mice exposed to repetitive mild TBI (rmTBI) were studied. Changes in the hippocampal TDP-43 expression patterns at 14 d following different brain trauma procedures showed pathological alterations only after single moderate, but not following rmTBI. Hippocampal LFPI-induced TDP-43 pathology was not accompanied by the microglial reaction, contrary to the findings after rmTBI, suggesting that different types of brain trauma may cause diverse pathophysiological changes in the brain, specifically related to the TDP-43 protein as well as to the microglial reaction. Taken together, our findings may contribute to a better understanding of the pathophysiological events following brain trauma.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica , Hipocampo/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Masculino , Camundongos
5.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498186

RESUMO

Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, causing degeneration of both upper and lower motor neurons in the central nervous system (CNS). ALS patients suffer from hyperreflexia, spasticity, paralysis and muscle atrophy and typically die due to respiratory failure 1-5 years after disease onset. In addition to the degeneration of motor neurons on the cellular level, ALS has been associated with neuroinflammation, such as microgliosis. Microglial activation in ALS can either be protective or degenerative to the neurons. Among others, mutations in superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9Orf72), transactive response DNA binding protein (TDP) 43 and vacuolar protein sorting-associated protein 54 (VPS54) genes have been associated with ALS. Here, we describe the dual role and functionality of microglia in four different in vivo ALS models and search for the lowest common denominator with respect to the role of microglia in the highly heterogeneous disease of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Microglia/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Microglia/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Eur Neurol ; 79(3-4): 200-205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587294

RESUMO

Subicular degeneration occurs in amyotrophic lateral sclerosis (ALS) patients. However, it was unknown whether microscopic subicular degeneration could be observed as macroscopic changes and whether these changes were associated with the transactive-response DNA binding protein 43 kDa (TDP-43) pathology. Topographic differences between subicular degeneration caused by ALS and Alzheimer disease (AD) had also not been characterized. Here we investigated the subiculum and related areas in autopsied brains from 3 ALS and 3 AD patients. Macroscopic subicular thinning and corresponding astrocytosis were pronounced in ALS compared to AD. This thinning was frequently accompanied by TDP-43 pathology in the transentorhinal cortex and nucleus accumbens. The preferential susceptibility of the perforant pathway to TDP-43 deposition may be an underlying cause of subicular thinning in ALS.


Assuntos
Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/patologia , Hipocampo/patologia , Idoso , Proteínas de Ligação a DNA , Feminino , Humanos , Masculino
7.
J Neurosci Res ; 95(8): 1647-1665, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27935101

RESUMO

Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Glicoproteínas de Membrana/metabolismo , Neurônios Motores/fisiologia , Medula Espinal/patologia , Idoso , Animais , Proteínas de Ligação ao Cálcio , Morte Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Proteínas dos Microfilamentos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Mutação/genética , Proteínas de Neurofilamentos/metabolismo , Agregados Proteicos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
Neuropathol Appl Neurobiol ; 43(2): 133-153, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27178390

RESUMO

AIMS: Cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 (TDP-43) is an early determinant of motor neuron degeneration in most amyotrophic lateral sclerosis (ALS) cases. We previously disclosed this accumulation in circulating lymphomonocytes (CLM) of ALS patients with mutant TARDBP, the TDP-43-coding gene, as well as of a healthy individual carrying the parental TARDBP mutation. Here, we investigate TDP-43 subcellular localization in CLM and in the constituent cells, lymphocytes and monocytes, of patients with various ALS-linked mutant genes. METHODS: TDP-43 subcellular localization was analysed with western immunoblotting and immunocytofluorescence in CLM of healthy controls (n = 10), patients with mutant TARDBP (n = 4, 1 homozygous), valosin-containing protein (VCP; n = 2), fused in sarcoma/translocated in liposarcoma (FUS; n = 2), Cu/Zn superoxide dismutase 1 (SOD1; n = 6), chromosome 9 open reading frame 72 (C9ORF72; n = 4), without mutations (n = 5) and neurologically unaffected subjects with mutant TARDBP (n = 2). RESULTS: TDP-43 cytoplasmic accumulation was found (P < 0.05 vs. controls) in CLM of patients with mutant TARDBP or VCP, but not FUS, in line with TDP-43 subcellular localization described for motor neurons of corresponding groups. Accumulation also characterized CLM of the healthy individuals with mutant TARDBP and of some patients with mutant SOD1 or C9ORF72. In 5 patients, belonging to categories described to carry TDP-43 mislocalization in motor neurons (3 C9ORF72, 1 TARDBP and 1 without mutations), TDP-43 cytoplasmic accumulation was not detected in CLM or in lymphocytes but was in monocytes. CONCLUSIONS: In ALS forms characterized by TDP-43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Monócitos/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
9.
Neuropathol Appl Neurobiol ; 42(6): 561-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26819002

RESUMO

AIMS: Axonal aggregates of phosphorylated (p-) transactive response DNA-binding protein 43 kDa (TDP-43) in sporadic amyotrophic lateral sclerosis (sALS) were examined in relation to propagation of the protein in the nervous system. METHODS: Brains and spinal cords of Japanese patients with sALS and control subjects were examined immunohistochemically using formalin-fixed paraffin-embedded specimens with special reference to the topographical distribution, microscopic features, presynaptic aggregates, and correlation between the aggregates in axons and the clinical course. RESULTS: (i) Aggregates of p-TDP-43 were frequently present in axons of the hypoglossal and facial nerve fibres and the spinal anterior horn cells. (ii) Aggregates of p-TDP-43 in the axons showed two characteristic microscopic features - dash-like granuloreticular aggregates (GRAs) and massive aggregates (MAs). (iii) MAs were surrounded by p-neurofilaments, but p-neurofilament immunnoreactivity decreased at the inside of axons with GRAs. (iv) Patients showing MAs and GRAs had a relatively shorter clinical course than patients without the aggregates. (v) Some neurones in the red nucleus in patients were surrounded by synapses containing p- and p-independent (i)-TDP-43, and almost all neurones had lost their nuclear TDP-43 immunoreactivity; 17% of those neurones in the red nucleus also had TDP-43-immunopositive neuronal cytoplasmic inclusions, but no postsynaptic p-TDP-43 deposition was evident. CONCLUSIONS: There are two types of axonal p-TDP-43 aggregates, MAs and GRAs, located predominantly in the facial and hypoglossal nuclei and anterior horn cells. These aggregates may influence the function of neurones, and presynaptic aggregates of the protein induce loss of p-i-TDP-43 in the nuclei of postsynaptic neurones.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Axônios/patologia , Proteínas de Ligação a DNA/metabolismo , Corpos de Inclusão/patologia , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Povo Asiático , Axônios/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Corpos de Inclusão/metabolismo , Masculino , Pessoa de Meia-Idade , Medula Espinal/metabolismo , Medula Espinal/patologia
10.
Neurobiol Dis ; 62: 218-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24141020

RESUMO

The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1ß were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms involved in S1R-mediated neuroprotection.


Assuntos
Morfolinas/uso terapêutico , Doença dos Neurônios Motores/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Receptores sigma/metabolismo , Fatores Etários , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Neuroglia/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Receptor Sigma-1
12.
Artigo em Inglês | MEDLINE | ID: mdl-38504592

RESUMO

Aims: Increasing nicotinamide adenine dinucleotide (NAD+) availability has been proposed as a therapeutic approach to prevent neurodegeneration in amyotrophic lateral sclerosis (ALS). Accordingly, NAD+ precursor supplementation appears to exert neuroprotective effects in ALS patients and mouse models. The mechanisms mediating neuroprotection remain uncertain but could involve changes in multiple cell types. We investigated a potential direct effect of the NAD+ precursor nicotinamide mononucleotide (NMN) on the health of cultured induced pluripotent stem cell (iPSC)-derived human motor neurons and in motor neurons isolated from two ALS mouse models, that is, mice overexpressing wild-type transactive response DNA binding protein-43 (TDP-43) or the ALS-linked human superoxide dismutase 1 with the G93A mutation (hSOD1G93A). Results: NMN treatment increased the complexity of neuronal processes in motor neurons isolated from both mouse models and in iPSC-derived human motor neurons. In addition, NMN prevented neuronal death induced by trophic factor deprivation. In mouse and human motor neurons expressing ALS-linked mutant superoxide dismutase 1, NMN induced an increase in glutathione levels, but this effect was not observed in nontransgenic or TDP-43 overexpressing motor neurons. In contrast, NMN treatment normalized the TDP-43 cytoplasmic mislocalization induced by its overexpression. Innovation: NMN can directly act on motor neurons to increase the growth and complexity of neuronal processes and prevent the death induced by trophic factor deprivation. Conclusion: Our results support a direct beneficial effect of NAD+ precursor supplementation on the maintenance of the neuritic arbor in motor neurons. Importantly, this was observed in motor neurons isolated from two different ALS models, with and without involvement of TDP-43 pathology, supporting its therapeutic potential in sporadic and familial ALS.

13.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554281

RESUMO

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Assuntos
Neurônios Colinérgicos , Metiltransferases , Doenças Neuromusculares , Animais , Humanos , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neuromusculares/metabolismo , Doenças Neuromusculares/patologia
14.
Brain Sci ; 13(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37891841

RESUMO

Frontotemporal lobar degeneration (FTLD) belongs to a heterogeneous group of highly complex neurodegenerative diseases and represents the second cause of presenile dementia in individuals under 65. Frontotemporal-TDP is a subgroup of frontotemporal dementia characterized by the aggregation of abnormal protein deposits, predominantly transactive response DNA-binding protein 43 (TDP-43), in the frontal and temporal brain regions. These deposits lead to progressive degeneration of neurons resulting in cognitive and behavioral impairments. Limbic age-related encephalopathy (LATE) pertains to age-related cognitive decline primarily affecting the limbic system, which is crucial for memory, emotions, and learning. However, distinct, emerging research suggests a potential overlap in pathogenic processes, with some cases of limbic encephalopathy displaying TDP-43 pathology. Genetic factors play a pivotal role in both disorders. Mutations in various genes, such as progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72), have been identified as causative in frontotemporal-TDP. Similarly, specific genetic variants have been associated with an increased risk of developing LATE. Understanding these genetic links provides crucial insights into disease mechanisms and the potential for targeted therapies.

15.
Chin J Integr Med ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695446

RESUMO

OBJECTIVE: To examine the effect of combined treatment with Bojungikgi-tang (BJIGT, Buzhong Yiqi Decoction) and riluzole (RZ) in transactive response DNA-binding protein 43 (TDP-43) stress granule (SG) cells, a amyotrophic lateral sclerosis (ALS) cell line using transcriptomic and molecular techniques. METHODS: TDP-43 SG cells were pretreated with BJIGT (100 µg/mL), RZ (50 µmol/L), and combined BJIGT (100 µg/mL)/RZ (50 µmol/L) for 6 h before treatment with lipopolysaccharide (LPS, 200 µmol/L). Cell viability assay was performed to elucidate cell toxicity in TDP-43 SC cells using a cell-counting kit-8 (CCK8) assay kit. The expression levels of cell death-related proteins, including Bax, caspase 1, cleaved caspase 3 and DJ1 in TDP-43 SG cells were examined by Western blot analysis. The autophagy-related proteins, including pmTOR/mTOR, LC3b, P62, ATG7 and Bcl-2-associated athanogene 3 (Bag3) were investigated using immunofluorescence and immunoblotting assays. RESULTS: Cell viability assay and Western blot analysis showed that combined treatment with BJIGT and RZ suppressed LPS-induced cell death and expression of cell death-related proteins, including Bax, caspase 1, and DJ1 (P<0.05 or P<0.01). Immunofluorescence and immunoblotting assays showed that combined treatment with BJIGT and RZ reduced LPS-induced formation of TDP-43 aggregates and regulated autophagy-related protein levels, including p62, light chain 3b, Bag3, and ATG7, in TDP-43-expressing cells (P<0.05 or P<0.01). CONCLUSION: The combined treatment of BJIGT and RZ might reduce inflammation and regulate autophagy dysfunction in TDP-43-induced ALS.

16.
Biomolecules ; 12(3)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327632

RESUMO

Recently, disease-associated variants of the TUBA4A gene were identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we present the neuropathological report of a patient with the semantic variant of primary progressive aphasia with a family history of Parkinsonism, harboring a novel frameshift mutation c.187del (p.Arg64Glyfs*90) in TUBA4A. Immunohistochemistry showed abundant TAR DNA-binding protein 43 kDa (TDP-43) dystrophic neurite pathology in the frontal and temporal cortex and the dentate gyrus of the hippocampus, consistent with frontotemporal lobar degeneration (FTLD). The observed pathology pattern fitted best with that of FTLD-TDP Type C. qPCR showed the presence of mutant TUBA4A mRNA. However, no truncated TUBA4A was detected at the protein level. A decrease in total TUBA4A mRNA and protein levels suggests loss-of-function as a potential pathogenic mechanism. This report strengthens the idea that N-terminal TUBA4A mutations are associated with FTLD-TDP. These N-terminal mutations possibly exert their pathogenic effects through haploinsufficiency, contrary to C-terminal TUBA4A mutations which are thought to disturb the microtubule network via a dominant-negative mechanism.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Mutação , RNA Mensageiro/genética
17.
J Alzheimers Dis ; 87(2): 595-607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311708

RESUMO

BACKGROUND: Down syndrome (DS) is frequently associated with Alzheimer's disease (AD)-related neuropathological changes. There are few observations on the spectrum of mixed proteinopathies in DS patients. OBJECTIVE: This study aimed to evaluate multiple disease-associated proteinopathies in a series of DS cases. METHODS: We analyzed the distribution of neurodegenerative disease associated proteins in postmortem brain samples from 11 DS cases (6 females, median age 57, range 38-66 years). Sections were stained for phosphorylated tau, 3-repeat and 4-repeat tau, amyloid-ß, alpha synuclein, phosphorylated TDP-43, and p62. A comprehensive anatomical mapping and staging were applied for all proteins. RESULTS: Tau and amyloid-ß pathology was prevalent in all cases and compatible with that typically seen in AD with some subtle deviations. Four of 11 cases presented with Lewy-related pathology (LRP). Two cases followed the Braak staging (stage 4 and 5) whereas 2 cases presented with an atypical distribution. Two cases showed limbic predominant age-related TDP-43 encephalopathy (LATE) (stage 1 and stage 2) neuropathologic change. Two cases exhibited aging-related tau astrogliopathy (ARTAG). CONCLUSION: In addition to subtle deviations from AD regarding the morphology of amyloid-ß deposition and distribution of neuronal tau pathology, we find that the spectrum of mixed-pathologies in DS show distinctive features such as deviations from the Braak staging of LRP and that LATE neuropathologic change and ARTAG pathology can be seen in individuals younger than in sporadic AD cases. Our observations support the notion that DS has distinctive pathogenic pathways from sporadic AD.


Assuntos
Doença de Alzheimer , Síndrome de Down , Doenças Neurodegenerativas , Adulto , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Proteínas de Ligação a DNA/metabolismo , Síndrome de Down/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/complicações , Proteínas tau/metabolismo
18.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159325

RESUMO

Extracellular vesicles (EVs) play a central role in neurodegenerative diseases (NDs) since they may either spread the pathology or contribute to the intracellular protein quality control (PQC) system for the cellular clearance of NDs-associated proteins. Here, we investigated the crosstalk between large (LVs) and small (SVs) EVs and PQC in the disposal of TDP-43 and its FTLD and ALS-associated C-terminal fragments (TDP-35 and TDP-25). By taking advantage of neuronal cells (NSC-34 cells), we demonstrated that both EVs types, but particularly LVs, contained TDP-43, TDP-35 and TDP-25. When the PQC system was inhibited, as it occurs in NDs, we found that TDP-35 and TDP-25 secretion via EVs increased. In line with this observation, we specifically detected TDP-35 in EVs derived from plasma of FTLD patients. Moreover, we demonstrated that both neuronal and plasma-derived EVs transported components of the chaperone-assisted selective autophagy (CASA) complex (HSP70, BAG3 and HSPB8). Neuronal EVs also contained the autophagy-related MAP1LC3B-II protein. Notably, we found that, under PQC inhibition, HSPB8, BAG3 and MAP1LC3B-II secretion paralleled that of TDP-43 species. Taken together, our data highlight the role of EVs, particularly of LVs, in the disposal of disease-associated TDP-43 species, and suggest a possible new role for the CASA complex in NDs.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Vesículas Extracelulares , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo
19.
J Neurosci Methods ; 363: 109344, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469713

RESUMO

BACKGROUND: There is great interest in detecting, characterizing and quantifying transactive response DNA binding protein of 43 kDa (TDP-43), and its post-translational modifications, due to its association with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis. Unfortunately, detailed analysis of TDP-43 in human biological matrices by immunometric methods has been hindered by the relatively low abundance of TDP-43 and poor antibody reagent specificity. NEW METHOD: With the goal of developing a selective and multiplex method for characterizing TDP-43, we previously developed a high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) assay for relative quantification of TDP-43 in human brain tissue and cells. To improve analytical sensitivity and to perform absolute quantification, we coupled a novel RNA-based aptamer enrichment workflow (and inclusion of a stable isotope-labeled standard) to HPLC-MS/MS. RESULTS: The TDP-43 aptamer-enrichment-HPLC-MS/MS assay was linear from 0.37 to 2.55nmol/L, a range suitable for analysis of both human cells and brain tissue homogenates, and had a total CV of 14.8%. Quantitative TDP-43 peptide profiles were developed for cases of FTD with TDP-43 pathology and cases with no neurodegenerative pathology. COMPARISON WITH EXISTING METHODS: Compared to immunoenrichment, aptamer-enrichment yielded cleaner recoveries of TDP-43. The aptamer-enrichment-HPLC-MS/MS method, compared to our previous method without enrichment, increased analytical sensitivity by 8.7-fold and 11.8-fold for endogenous TDP-43 in human cells and brain tissue, respectively. Critically, inclusion of the aptamer enrichment step improved sequence resolution and enabled identification of TDP-43 C-terminal fragments. CONCLUSIONS: The aptamer-enrichment-HPLC-MS/MS method enabled highly selective quantification, enhanced sequence coverage and structural characterization of endogenous TDP-43.


Assuntos
Esclerose Lateral Amiotrófica , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Proteínas de Ligação a DNA , Humanos , Corpos de Inclusão
20.
Acta Neuropathol Commun ; 9(1): 15, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461623

RESUMO

Transactive response DNA-binding protein 43 kDa (TDP-43) has been identified as the major component of ubiquitinated inclusions found in patients with sporadic amyotrophic lateral sclerosis (ALS). Increasing evidence suggests prion-like transmission of TDP-43 aggregates via neuroanatomic connection in vitro and pyramidal tract in vivo. However, it is still unknown whether the spreading of pathological TDP-43 sequentially via pyramidal tract can initiate ALS-like pathology and phenotypes. In this study, we reported that injection of TDP-43 preformed fibrils (PFFs) into the primary motor cortex (M1) of Thy1-e (IRES-TARDBP) 1 mice induced the spreading of pathological TDP-43 along pyramidal tract axons anterogradely. Moreover, TDP-43 PFFs-injected Thy1-e (IRES-TARDBP) 1 mice displayed ALS-like neuropathological features and symptoms, including motor dysfunctions and electrophysiological abnormalities. These findings provide direct evidence that transmission of pathological TDP-43 along pyramidal tract induces ALS-like phenotypes, which further suggest the potential mechanism for TDP-43 proteinopathy.


Assuntos
Esclerose Lateral Amiotrófica/genética , Transporte Axonal , Proteínas de Ligação a DNA/genética , Córtex Motor/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Tratos Piramidais/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Córtex Motor/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/fisiopatologia , Tratos Piramidais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA