Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cell ; 185(21): 3896-3912.e22, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36167070

RESUMO

Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures. We identify the transcription factor Ddit3 as a key effector of PERK signaling that maps OR-dependent ER stress patterns to the transcriptional regulation of axon guidance and cell-adhesion genes, instructing targeting precision. Our results extend the known functions of the UPR from a quality-control pathway that protects cells from misfolded proteins to a sensor of cellular identity that interprets physiological states to direct axon wiring.


Assuntos
Axônios/metabolismo , Estresse do Retículo Endoplasmático , Receptores Odorantes , Animais , Camundongos , Bulbo Olfatório , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Fatores de Transcrição/metabolismo
2.
Annu Rev Cell Dev Biol ; 32: 441-468, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298090

RESUMO

Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.


Assuntos
Apoptose , Desenvolvimento Vegetal , Senescência Celular , Células Vegetais/metabolismo , Reprodução
3.
Genes Dev ; 35(5-6): 335-353, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602870

RESUMO

mSWI/SNF or BAF chromatin regulatory complexes are dosage-sensitive regulators of human neural development frequently mutated in autism spectrum disorders and intellectual disability. Cell cycle exit and differentiation of neural stem/progenitor cells is accompanied by BAF subunit switching to generate neuron-specific nBAF complexes. We manipulated the timing of BAF subunit exchange in vivo and found that early loss of the npBAF subunit BAF53a stalls the cell cycle to disrupt neurogenesis. Loss of BAF53a results in decreased chromatin accessibility at specific neural transcription factor binding sites, including the pioneer factors SOX2 and ASCL1, due to Polycomb accumulation. This results in repression of cell cycle genes, thereby blocking cell cycle progression and differentiation. Cell cycle block upon Baf53a deletion could be rescued by premature expression of the nBAF subunit BAF53b but not by other major drivers of proliferation or differentiation. WNT, EGF, bFGF, SOX2, c-MYC, or PAX6 all fail to maintain proliferation in the absence of BAF53a, highlighting a novel mechanism underlying neural progenitor cell cycle exit in the continued presence of extrinsic proliferative cues.


Assuntos
Actinas/metabolismo , Ciclo Celular/genética , Córtex Cerebelar/embriologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Actinas/genética , Animais , Sítios de Ligação/genética , Células Cultivadas , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos , Deleção de Genes , Genes cdc/genética , Camundongos , Neurogênese/genética , Proteínas do Grupo Polycomb/metabolismo , Fatores de Transcrição/metabolismo
4.
Mol Cell ; 72(6): 920-924, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576654

RESUMO

Fine tuning of the transcriptional program requires the competing action of multiple protein complexes in a well-organized environment. Genome folding creates proximity between genes, leading to accumulation of regulatory factors and formation of local microenvironments. Many roles of this complex organization controlling gene transcription remain to be explored. In this Perspective, we are proposing the existence of a transcriptional ecosystem equilibrium: a mechanism balancing transcriptional regulation between connected genes during environmental disturbances. This model is derived from chromosome architecture studies assigning genes to specific DNA structures and evidence establishing that the transcription machinery and coregulators create dynamic phase separation droplets surrounding active genes. Defining connected genes as ecosystems rather than individuals will cement that transcriptional regulation is a biochemical equilibrium and force a reassessment of direct and indirect responses to environmental disturbances.


Assuntos
Núcleo Celular/fisiologia , Cromatina/genética , Cromossomos/genética , Ecossistema , Genoma , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Microambiente Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Cromossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
5.
New Phytol ; 241(2): 560-566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37974513

RESUMO

Drought and the availability of nitrate, the predominant source of nitrogen (N) in agriculture, are major factors limiting plant growth and crop productivity. The dissection of the transcriptional networks' components integrating droght stress and nitrate responses provides valuable insights into how plants effectively balance stress response with growth programs. Recent evidence in Arabidopsis thaliana indicates that transcription factors (TFs) involved in abscisic acid (ABA) signaling affect N metabolism and nitrate responses, and reciprocally, components of nitrate signaling might affect ABA and drought gene responses. Advances in understanding regulatory circuits of nitrate and drought crosstalk in plant tissues empower targeted genetic modifications to enhance plant development and stress resistance, critical traits for optimizing crop yield and promoting sustainable agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Secas , Nitratos/metabolismo , Redes Reguladoras de Genes , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753477

RESUMO

Sensing available nutrients and efficiently utilizing them is a challenge common to all organisms. The model filamentous fungus Neurospora crassa is capable of utilizing a variety of inorganic and organic nitrogen sources. Nitrogen utilization in N. crassa is regulated by a network of pathway-specific transcription factors that activate genes necessary to utilize specific nitrogen sources in combination with nitrogen catabolite repression regulatory proteins. We identified an uncharacterized pathway-specific transcription factor, amn-1, that is required for utilization of the nonpreferred nitrogen sources proline, branched-chain amino acids, and aromatic amino acids. AMN-1 also plays a role in regulating genes involved in responding to the simple sugar mannose, suggesting an integration of nitrogen and carbon metabolism. The utilization of nonpreferred nitrogen sources, which require metabolic processing before being used as a nitrogen source, is also regulated by the nitrogen catabolite regulator NIT-2. Using RNA sequencing combined with DNA affinity purification sequencing, we performed a survey of the role of NIT-2 and the pathway-specific transcription factors NIT-4 and AMN-1 in directly regulating genes involved in nitrogen utilization. Although previous studies suggested promoter binding by both a pathway-specific transcription factor and NIT-2 may be necessary for activation of nitrogen-responsive genes, our data show that pathway-specific transcription factors regulate genes involved in the catabolism of specific nitrogen sources, while NIT-2 regulates genes involved in utilization of all nonpreferred nitrogen sources, such as nitrogen transporters. Together, these transcription factors form a nutrient sensing network that allows N. crassa cells to regulate nitrogen utilization.


Assuntos
Repressão Catabólica/genética , Regulação Fúngica da Expressão Gênica , Neurospora crassa/fisiologia , Nitrogênio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , RNA-Seq , Transativadores , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155145

RESUMO

In rice, a small increase in nighttime temperature reduces grain yield and quality. How warm nighttime temperatures (WNT) produce these detrimental effects is not well understood, especially in field conditions where the typical day-to-night temperature fluctuation exceeds the mild increase in nighttime temperature. We observed genome-wide disruption of gene expression timing during the reproductive phase in field-grown rice panicles acclimated to 2 to 3 °C WNT. Transcripts previously identified as rhythmically expressed with a 24-h period and circadian-regulated transcripts were more sensitive to WNT than were nonrhythmic transcripts. The system-wide perturbations in transcript levels suggest that WNT disrupt the tight temporal coordination between internal molecular events and the environment, resulting in reduced productivity. We identified transcriptional regulators whose predicted targets are enriched for sensitivity to WNT. The affected transcripts and candidate regulators identified through our network analysis explain molecular mechanisms driving sensitivity to WNT and identify candidates that can be targeted to enhance tolerance to WNT.


Assuntos
Ritmo Circadiano/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Temperatura , Transcriptoma/genética , Agricultura , Biomassa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39337320

RESUMO

Endometritis is an inflammatory disease that negatively influences fertility and is common in milk-producing cows. An in vitro model for bovine endometrial inflammation was used to identify enrichment of cis-acting regulatory elements in differentially methylated regions (DMRs) in the genome of in vitro-cultured primary bovine endometrial epithelial cells (bEECs) before and after treatment with lipopolysaccharide (LPS) from E. coli, a key player in the development of endometritis. The enriched regulatory elements contain binding sites for transcription factors with established roles in inflammation and hypoxia including NFKB and Hif-1α. We further showed co-localization of certain enriched cis-acting regulatory motifs including ARNT, Hif-1α, and NRF1. Our results show an intriguing interplay between increased mRNA levels in LPS-treated bEECs of the mRNAs encoding the key transcription factors such as AHR, EGR2, and STAT1, whose binding sites were enriched in the DMRs. Our results demonstrate an extraordinary cis-regulatory complexity in these DMRs having binding sites for both inflammatory and hypoxia-dependent transcription factors. Obtained data using this in vitro model for bacterial-induced endometrial inflammation have provided valuable information regarding key transcription factors relevant for clinical endometritis in both cattle and humans.


Assuntos
Metilação de DNA , Endométrio , Células Epiteliais , Lipopolissacarídeos , Bovinos , Animais , Feminino , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Endométrio/metabolismo , Endometrite/metabolismo , Endometrite/genética , Sítios de Ligação , Células Cultivadas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico
9.
Semin Cell Dev Biol ; 118: 4-13, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34083116

RESUMO

One paramount challenge for neuroscientists over the past century has been to identify the embryonic origins of the enormous diversity of cortical neurons found in the adult human neocortex and to unravel the developmental processes governing their emergence. In all mammals, including humans, the radial glia lining the ventricles of the embryonic telencephalon, more recently reclassified as apical radial glia (aRGs), have been identified as the neural progenitors giving rise to all excitatory neurons and inhibitory interneurons of the six-layered cortex. In this review, we explore the fundamental molecular and cellular mechanisms that regulate aRG function and the generation of neuronal diversity in the dorsal telencephalon. We survey the key structural features essential for the retention of the highly polarized aRG morphology and therefore impose aRG identity after cytokinesis. We discuss how these structures and associated molecular signaling complexes influence aRG proliferative capacity and the decision to undergo proliferative self-renewing symmetric or neurogenic asymmetric divisions. We also explore the intriguing and complex question of how the extensive neuronal diversity within the adult neocortex arises from the small aRG population located within the cortical proliferative zone. We further highlight the recent clonal lineage tracing and single-cell transcriptomic profiling studies providing compelling evidence that individual neuronal identity emerges as a consequence of exposure to temporally regulated extrinsic cues which coordinate waves of transcriptional activity that evolve over time to drive neuronal commitment and maturation.


Assuntos
Neocórtex/embriologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Humanos
10.
BMC Genomics ; 24(1): 382, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420172

RESUMO

BACKGROUND: Genomics data is available to the scientific community after publication of research projects and can be investigated for a multitude of research questions. However, in many cases deposited data is only assessed and used for the initial publication, resulting in valuable resources not being exploited to their full depth. MAIN: A likely reason for this is that many wetlab-based researchers are not formally trained to apply bioinformatic tools and may therefore assume that they lack the necessary experience to do so themselves. In this article, we present a series of freely available, predominantly web-based platforms and bioinformatic tools that can be combined in analysis pipelines to interrogate different types of next-generation sequencing data. Additionally to the presented exemplary route, we also list a number of alternative tools that can be combined in a mix-and-match fashion. We place special emphasis on tools that can be followed and used correctly without extensive prior knowledge in programming. Such analysis pipelines can be applied to existing data downloaded from the public domain or be compared to the results of own experiments. CONCLUSION: Integrating transcription factor binding to chromatin (ChIP-seq) with transcriptional output (RNA-seq) and chromatin accessibility (ATAC-seq) can not only assist to form a deeper understanding of the molecular interactions underlying transcriptional regulation but will also help establishing new hypotheses and pre-testing them in silico.


Assuntos
Biologia Computacional , Genômica , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Cromatina por Imunoprecipitação , RNA-Seq
11.
Proc Biol Sci ; 290(1995): 20230407, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36987635

RESUMO

Nutrient deprivation (starvation) induced by fasting and hypercaloric regimens are stress factors that can influence cell and tissue homeostasis in mammals. One of the key cellular responses to changes in nutrient availability is the cell survival pathway autophagy. While there has been much research into the protein networks regulating autophagy, less is known about the gene expression networks involved in this fundamental process. Here, we applied a network algorithm designed to analyse omics datasets, to identify sub-networks that are enriched for induced genes in response to starvation. This enabled us to identify two prominent active modules, one composed of key stress-induced transcription factors, including members of the Jun, Fos and ATF families, and the other comprising autophagosome sub-network genes, including ULK1. The results were validated in the brain, liver and muscle of fasting mice. Moreover, differential expression analysis of autophagy genes in the brain, liver and muscle of high-fat diet-exposed mice showed significant suppression of GABARAPL1 in the liver. Finally, our data provide a resource that may facilitate the future identification of regulators of autophagy.


Assuntos
Autofagia , Inanição , Animais , Camundongos , Autofagia/fisiologia , Redes Reguladoras de Genes , Mamíferos
12.
Proc Natl Acad Sci U S A ; 117(11): 6003-6013, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32111691

RESUMO

Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


Assuntos
Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Pectinas/metabolismo , Polissacarídeos/metabolismo , Fatores de Transcrição/metabolismo , Biocombustíveis , Biomassa , Repressão Catabólica , Parede Celular/química , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Neurospora crassa/metabolismo , RNA-Seq
13.
Genes Dev ; 29(23): 2435-48, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26584622

RESUMO

Elf5 is a transcription factor with pivotal roles in the trophoblast compartment, where it reinforces a trophoblast stem cell (TSC)-specific transcriptional circuit. However, Elf5 is also present in differentiating trophoblast cells that have ceased to express other TSC genes such as Cdx2 and Eomes. In the present study, we aimed to elucidate the context-dependent role of Elf5 at the interface between TSC self-renewal and the onset of differentiation. We demonstrate that precise levels of Elf5 are critical for normal expansion of the TSC compartment and embryonic survival, as Elf5 overexpression triggers precocious trophoblast differentiation. Through integration of protein interactome, transcriptome, and genome-wide chromatin immunoprecipitation data, we reveal that this abundance-dependent function is mediated through a shift in preferred Elf5-binding partners; in TSCs, Elf5 interaction with Eomes recruits Tfap2c to triply occupied sites at TSC-specific genes, driving their expression. In contrast, the Elf5 and Tfap2c interaction becomes predominant as their protein levels increase. This triggers binding to double- and single-occupancy sites that harbor the cognate Tfap2c motif, causing activation of the associated differentiation-promoting genes. These data place Elf5 at the center of a stoichiometry-sensitive transcriptional network, where it acts as a molecular switch governing the balance between TSC proliferation and differentiation.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Trofoblastos/metabolismo
14.
Int J Mol Sci ; 24(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674967

RESUMO

Diclofenac effectively reduces pain and inflammation; however, its use is associated with hepato- and nephrotoxicity. To delineate mechanisms of injury, we investigated a clinically relevant (3 mg/kg) and high-dose (15 mg/kg) in minipigs for 4 weeks. Initially, serum biochemistries and blood-smears indicated an inflammatory response but returned to normal after 4 weeks of treatment. Notwithstanding, histopathology revealed drug-induced hepatitis, marked glycogen depletion, necrosis and steatosis. Strikingly, the genomic study revealed diclofenac to desynchronize the liver clock with manifest inductions of its components CLOCK, NPAS2 and BMAL1. The > 4-fold induced CRY1 expression underscored an activated core-loop, and the dose dependent > 60% reduction in PER2mRNA repressed the negative feedback loop; however, it exacerbated hepatotoxicity. Bioinformatics enabled the construction of gene-regulatory networks, and we linked the disruption of the liver-clock to impaired glycogenesis, lipid metabolism and the control of immune responses, as shown by the 3-, 6- and 8-fold induced expression of pro-inflammatory CXCL2, lysozyme and ß-defensin. Additionally, diclofenac treatment caused adrenocortical hypertrophy and thymic atrophy, and we evidenced induced glucocorticoid receptor (GR) activity by immunohistochemistry. Given that REV-ERB connects the circadian clock with hepatic GR, its > 80% repression alleviated immune responses as manifested by repressed expressions of CXCL9(90%), CCL8(60%) and RSAD2(70%). Together, we propose a circuitry, whereby diclofenac desynchronizes the liver clock in the control of the hepatic metabolism and immune response.


Assuntos
Relógios Circadianos , Animais , Suínos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Diclofenaco/farmacologia , Porco Miniatura , Fígado/metabolismo , Proteínas CLOCK/metabolismo , Transdução de Sinais
15.
Bioessays ; 42(12): e2000103, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169418

RESUMO

Reproduction and immunity are energy intensive, intimately linked processes in most organisms. In women, pregnancy is associated with widespread immunological adaptations that alter immunity to many diseases, whereas, immune dysfunction has emerged as a major cause for infertility in both men and women. Deciphering the molecular bases of this dynamic association is inherently challenging in mammals. This relationship has been traditionally studied in fast-living, invertebrate species, often in the context of resource allocation between life history traits. More recently, these studies have advanced our understanding of the mechanistic underpinnings of the immunity-fertility dialogue. Here, we review the molecular connections between reproduction and immunity from the perspective of human pregnancy to mechanistic discoveries in laboratory organisms. We focus particularly on recent invertebrate studies identifying conserved signaling pathways and transcription factors that regulate resource allocation and shape the balance between reproductive status and immune health.


Assuntos
Fertilidade , Infertilidade , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Gravidez , Reprodução
16.
Biochem Genet ; 60(2): 676-706, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34410558

RESUMO

Cartilage is a resilient and smooth connective tissue that is found throughout the body. Among the three major types of cartilage, namely hyaline cartilage, elastic cartilage, and fibrocartilage, hyaline cartilage is the most widespread type of cartilage predominantly located in the joint surfaces (articular cartilage, AC). It remains a huge challenge for orthopedic surgeons to deal with AC damage since it has limited capacity for self-repair. Xiphoid cartilage (XC) is a vestigial cartilage located in the distal end of the sternum. XC-derived chondrocytes exhibit strong chondrogenic differentiation capacity. Thus, XC could become a potential donor site of chondrocytes for cartilage repair and regeneration. However, the underlying gene expression patterns between AC and XC are still largely unknown. In the present study, we used state-of-the-art RNA-seq technology combined with validation method to investigate the gene expression patterns between AC and XC, and identified a series of differentially expressed genes (DEGs) involved in chondrocyte commitment and differentiation including growth factors, transcription factors, and extracellular matrices. We demonstrated that the majority of significantly up-regulated DEGs (XC vs. AC) in XC were involved in regulating cartilage regeneration and repair, whereas the majority of significantly up-regulated DEGs (XC vs. AC) in AC were involved in regulating chondrocyte differentiation and maturation. This study has increased our knowledge of transcriptional networks in hyaline cartilage and elastic cartilage. It also supports the use of XC-derived chondrocytes as a potential cell resource for cartilage regeneration and repair.


Assuntos
Cartilagem Articular , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrogênese , Expressão Gênica , Esterno
17.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35682989

RESUMO

Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Reprogramação Celular/genética , Epigênese Genética , Epigenômica , Humanos , Sarcoma/genética , Sarcoma/terapia , Neoplasias de Tecidos Moles/terapia
18.
Proc Natl Acad Sci U S A ; 115(52): E12453-E12462, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30541889

RESUMO

To combat DNA damage, organisms mount a DNA damage response (DDR) that results in cell cycle regulation, DNA repair and, in severe cases, cell death. Underscoring the importance of gene regulation in this response, studies in Arabidopsis have demonstrated that all of the aforementioned processes rely on SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a NAC family transcription factor (TF) that has been functionally equated to the mammalian tumor suppressor, p53. However, the expression networks connecting SOG1 to these processes remain largely unknown and, although the DDR spans from minutes to hours, most transcriptomic data correspond to single time-point snapshots. Here, we generated transcriptional models of the DDR from GAMMA (γ)-irradiated wild-type and sog1 seedlings during a 24-hour time course using DREM, the Dynamic Regulatory Events Miner, revealing 11 coexpressed gene groups with distinct biological functions and cis-regulatory features. Within these networks, additional chromatin immunoprecipitation and transcriptomic experiments revealed that SOG1 is the major activator, directly targeting the most strongly up-regulated genes, including TFs, repair factors, and early cell cycle regulators, while three MYB3R TFs are the major repressors, specifically targeting the most strongly down-regulated genes, which mainly correspond to G2/M cell cycle-regulated genes. Together these models reveal the temporal dynamics of the transcriptional events triggered by γ-irradiation and connects these events to TFs and biological processes over a time scale commensurate with key processes coordinated in response to DNA damage, greatly expanding our understanding of the DDR.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reparo do DNA/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular , Dano ao DNA/fisiologia , Reparo do DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Transativadores/metabolismo , Ativação Transcricional , Transcriptoma/genética
19.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809189

RESUMO

Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.


Assuntos
Produtos Biológicos/metabolismo , Produtos Agrícolas/metabolismo , Resistência à Doença/genética , Metabolismo Secundário/genética , Produtos Agrícolas/crescimento & desenvolvimento , Flavonoides/metabolismo , Humanos , Região do Mediterrâneo , Redes e Vias Metabólicas/genética , Compostos Fitoquímicos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Estresse Fisiológico/efeitos dos fármacos , Terpenos/metabolismo
20.
BMC Bioinformatics ; 21(1): 219, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471360

RESUMO

BACKGROUND: Reverse engineering of transcriptional regulatory networks (TRN) from genomics data has always represented a computational challenge in System Biology. The major issue is modeling the complex crosstalk among transcription factors (TFs) and their target genes, with a method able to handle both the high number of interacting variables and the noise in the available heterogeneous experimental sources of information. RESULTS: In this work, we propose a data fusion approach that exploits the integration of complementary omics-data as prior knowledge within a Bayesian framework, in order to learn and model large-scale transcriptional networks. We develop a hybrid structure-learning algorithm able to jointly combine TFs ChIP-Sequencing data and gene expression compendia to reconstruct TRNs in a genome-wide perspective. Applying our method to high-throughput data, we verified its ability to deal with the complexity of a genomic TRN, providing a snapshot of the synergistic TFs regulatory activity. Given the noisy nature of data-driven prior knowledge, which potentially contains incorrect information, we also tested the method's robustness to false priors on a benchmark dataset, comparing the proposed approach to other regulatory network reconstruction algorithms. We demonstrated the effectiveness of our framework by evaluating structural commonalities of our learned genomic network with other existing networks inferred by different DNA binding information-based methods. CONCLUSIONS: This Bayesian omics-data fusion based methodology allows to gain a genome-wide picture of the transcriptional interplay, helping to unravel key hierarchical transcriptional interactions, which could be subsequently investigated, and it represents a promising learning approach suitable for multi-layered genomic data integration, given its robustness to noisy sources and its tailored framework for handling high dimensional data.


Assuntos
Redes Reguladoras de Genes , Algoritmos , Teorema de Bayes , Sequenciamento de Cromatina por Imunoprecipitação , Genômica/métodos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA