Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079264

RESUMO

Identification of p73 as a structural homolog of p53 fueled early studies aimed at determining if it was capable of performing p53-like functions. This led to a conundrum as p73 was discovered to be hardly mutated in cancers, and yet, TAp73, the full-length form, was found capable of performing p53-like functions, including transactivation of many p53 target genes in cancer cell lines. Generation of mice lacking p73/TAp73 revealed a plethora of developmental defects, with very limited spontaneous tumors arising only at a later stage. Concurrently, novel TAp73 target genes involved in cellular growth promotion that are not regulated by p53 were identified, mooting the possibility that TAp73 may have diametrically opposite functions to p53 in tumorigenesis. We have therefore comprehensively evaluated the TAp73 target genes identified and validated in human cancer cell lines, to examine their contextual relevance. Data from focused studies aimed at appraising if p53 targets are also regulated by TAp73-often by TAp73 overexpression in cell lines with non-functional p53-were affirmative. However, genome-wide and phenotype-based studies led to the identification of TAp73-regulated genes involved in cellular survival and thus, tumor promotion. Our analyses therefore suggest that TAp73 may not necessarily be p53's natural substitute in enforcing tumor suppression. It has likely evolved to perform unique functions in regulating developmental processes and promoting cellular growth through entirely different sets of target genes that are not common to, and cannot be substituted by p53. The p53-related targets initially reported to be regulated by TAp73 may therefore represent an experimental possibility rather than the reality.


Assuntos
Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Camundongos , Proteína Tumoral p73/metabolismo
2.
Dev Biol ; 426(2): 165-175, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27091726

RESUMO

The canonical Wnt/ß-catenin signaling pathway plays multiple roles during Xenopus gastrulation, including posteriorization of the neural plate, patterning of the mesoderm, and induction of the neural crest. Wnt signaling stabilizes ß-catenin, which then activates target genes. However, few targets of this signaling pathway that mediate early developmental processes are known. Here we sought to identify transcriptional targets of the Wnt/ß-catenin signaling pathway using a genome-wide approach. We selected putative targets using the criteria of reduced expression upon zygotic Wnt knockdown, ß-catenin binding within 50kb of the gene, and expression in tissues that receive Wnt signaling. Using these criteria, we found 21 novel direct transcriptional targets of Wnt/ß-catenin signaling during gastrulation and in addition have identified putative regulatory elements for further characterization in future studies.


Assuntos
Gástrula/metabolismo , Gastrulação/genética , Via de Sinalização Wnt , Xenopus laevis/embriologia , Animais , Sítios de Ligação , Blastômeros/metabolismo , Imunoprecipitação da Cromatina , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Mesoderma/metabolismo , Crista Neural/metabolismo , Tubo Neural/metabolismo , Oligopeptídeos , RNA Mensageiro/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiologia , Xenopus laevis/genética , beta Catenina/metabolismo
3.
Biochim Biophys Acta ; 1839(11): 1316-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25287128

RESUMO

FOXM1 is a transcription factor required for a wide spectrum of essential biological functions, including DNA damage repair, cell proliferation, cell cycle progression, cell renewal, cell differentiation and tissue homeostasis. Recent evidence suggests that FOXM1 also has a role in many aspects of the DNA damage response. Accordingly, FOXM1 drives the transcription of genes for DNA damage sensors, mediators, signal transducers and effectors. As a result of these functions, it plays an integral part in maintaining the integrity of the genome and so is key to the propagation of accurate genetic information to the next generation. Preserving the genetic code is a vital means of suppressing cancer and other genetic diseases. Conversely, FOXM1 is also a potent oncogenic factor that is essential for cancer initiation, progression and drug resistance. An enhanced FOXM1 DNA damage repair gene expression network can confer resistance to genotoxic agents. Developing a thorough understanding of the regulation and function of FOXM1 in DNA damage response will improve the diagnosis and treatment of diseases including cancer, neurodegenerative conditions and immunodeficiency disorders. It will also benefit cancer patients with acquired genotoxic agent resistance.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição Forkhead/fisiologia , Animais , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Humanos
4.
Cancers (Basel) ; 15(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37835395

RESUMO

The Hippo pathway transcriptional co-activators, YES-associated protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ), have both been linked to tumor progression and metastasis. These two proteins possess overlapping and distinct functions, and their activities lead to the expression of genes involved in multiple cellular processes, including cell proliferation, survival, and migration. The dysregulation of YAP/TAZ-dependent cellular processes can result in altered tumor growth and metastasis. In addition to their well-documented roles in the regulation of cancer cell growth, survival, migration, and invasion, the YAP/TAZ-dependent signaling pathways have been more recently implicated in cellular processes that promote metastasis and therapy resistance in several solid tumor types. This review highlights the role of YAP/TAZ signaling networks in the regulation of tumor cell plasticity mediated by hybrid and reversible epithelial-mesenchymal transition (EMT) states, and the promotion of cancer stem cell/progenitor phenotypes. Mechanistically, YAP and TAZ regulate these cellular processes by targeting transcriptional networks. In this review, we detail recently uncovered mechanisms whereby YAP and TAZ mediate tumor growth, metastasis, and therapy resistance, and discuss new therapeutic strategies to target YAP/TAZ function in various solid tumor types. Understanding the distinct and overlapping roles of YAP and TAZ in multiple cellular processes that promote tumor progression to metastasis is expected to enable the identification of effective therapies to treat solid tumors through the hyper-activation of YAP and TAZ.

5.
Front Cardiovasc Med ; 7: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548128

RESUMO

Metabolic syndrome (MetSyn) is a combination of metabolic abnormalities that lead to the development of cardiovascular disease (CVD) and Type 2 Diabetes (T2D). Although various criteria for defining MetSyn exist, common abnormalities include abdominal obesity, elevated serum triglyceride, insulin resistance, and blood glucose, decreased high-density lipoprotein cholesterol (HDL-C), and hypertension. MetSyn prevalence has been increasing with the rise of obesity worldwide, with significantly higher prevalence in women compared with men and in Hispanics compared with Whites. Affected individuals are at a higher risk of developing T2D (5-fold) and CVD (2-fold). Heritability estimates for individual components of MetSyn vary between 40 and 70%, suggesting a strong contribution of an individual's genetic makeup to disease pathology. The advent of next-generation sequencing technologies has enabled large-scale genome-wide association studies (GWAS) into the genetics underlying MetSyn pathogenesis. Several such studies have implicated the transcription factor KLF14, a member of the Krüpple-like factor family (KLF), in the development of metabolic diseases, including obesity, insulin resistance, and T2D. How KLF14 regulates these metabolic traits and increases the risk of developing T2D, atherosclerosis, and liver dysfunction is still unknown. There have been some debate and controversial results with regards to its expression profile and functionality in various tissues, and a systematic review of current knowledge on KLF14 is lacking. Here, we summarize the research progress made in understanding the function of KLF14 and describe common attributes of its biochemical, physiological, and pathophysiological roles. We also discuss the current challenges in understanding the role of KLF14 in metabolism and provide suggestions for future directions.

6.
Oncol Lett ; 15(3): 3753-3759, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29467892

RESUMO

Glioma is a severe disease of the central nervous system. Although previous studies have identified the important role of the immune response in association with tumor intervention, it is still unknown whether PU.1, a transcription factor known for its role in myeloid differentiation and immune responses, is involved in the progression of glioma. In the present study, we found a significant increase in SPI1, the gene that encodes PU.1, in samples from patients with glioma. Through genotype-phenotype association analysis several candidate factors that may mediate the role of PU.1 in glioma were identified. To further validate the association between PU.1 and glioma we found that the expression of BTK, a potential target of PU.1, was also upregulated in patients with glioma. We also demonstrated that various biological pathways could be involved in PU.1-associated glioma by analyzing these potential targets in the Reactome database. These results provide evidence that PU.1 could serve a role in the progress of glioma through its transcriptional targets in multiple signaling pathways. Therefore, in addition to its role in hematopoietic linage development and leukemia, PU.1 appears to be involved in the regulation of glioma and potentially in other malignant cancers.

7.
Mol Autism ; 6: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26056561

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairment in reciprocal social interactions and communication coupled with stereotyped, repetitive behaviors and restricted interests. Although genomic and functional studies are beginning to reveal some of the genetic complexity and underlying pathobiology of ASD, the consistently reported male bias of ASD remains an enigma. We have recently proposed that retinoic acid-related orphan receptor alpha (RORA), which is reduced in the brain and lymphoblastoid cell lines of multiple cohorts of individuals with ASD and oppositely regulated by male and female hormones, might contribute to the sex bias in autism by differentially regulating target genes, including CYP19A1 (aromatase), in a sex-dependent manner that can also lead to elevated testosterone levels, a proposed risk factor for autism. METHODS: In this study, we examine sex differences in RORA and aromatase protein levels in cortical tissues of unaffected and affected males and females by re-analyzing pre-existing confocal immunofluorescence data from our laboratory. We further investigated the expression of RORA and its correlation with several of its validated transcriptional targets in the orbital frontal cortex and cerebellum as a function of development using RNAseq data from the BrainSpan Atlas of the Developing Human Brain. In a pilot study, we also analyzed the expression of Rora and the same transcriptional targets in the cortex and cerebellum of adult wild-type male and female C57BL/6 mice. RESULTS: Our findings suggest that Rora/RORA and several of its transcriptional targets may exhibit sexually dimorphic expression in certain regions of the brain of both mice and humans. Interestingly, the correlation coefficients between Rora expression and that of its targets are much higher in the cortex of male mice relative to that of female mice. A strong positive correlation between the levels of RORA and aromatase proteins is also seen in the cortex of control human males and females as well as ASD males, but not ASD females. CONCLUSIONS: Based on these studies, we suggest that disruption of Rora/RORA expression may have a greater impact on males, since sex differences in the correlation of RORA and target gene expression indicate that RORA-deficient males may experience greater dysregulation of genes relevant to ASD in certain brain regions during development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA