Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Biotechnol Bioeng ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244694

RESUMO

Lentiviral vectors are highly efficient gene delivery vehicles used extensively in the rapidly growing field of cell and gene therapy. Demand for efficient, large-scale, lentiviral vector bioprocessing is growing as more therapies reach late-stage clinical trials and are commercialized. However, despite substantial progress, several process inefficiencies remain. The unintended auto-transduction of viral vector-producing cells by newly synthesized lentiviral vector particles during manufacturing processes constitutes one such inefficiency which remains largely unaddressed. In this study, we determined that over 60% of functional lentiviral vector particles produced during an upstream production process were lost to auto-transduction, highlighting a major process inefficiency likely widespread within the industry. Auto-transduction of cells by particles pseudotyped with the widely used vesicular stomatitis virus G protein was inhibited via the adoption of a reduced extracellular pH during vector production, impairing the ability of the vector to interact with its target receptor. Employing a posttransfection pH shift to pH 6.7-6.8 resulted in a sevenfold reduction in vector genome integration events, arising from lentiviral vector-mediated transduction, within viral vector-producing cell populations and ultimately resulted in improved lentiviral vector production kinetics. The proposed strategy is scalable and cost-effective, providing an industrially relevant approach to improve lentiviral vector production efficiencies.

2.
Biochem Biophys Res Commun ; 643: 157-168, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36610381

RESUMO

RNA activation, as a method of regulating gene expression at the transcriptional level, is far less widely used than RNA interference because of the insufficient understanding of the mechanism and the unstable success rate. It is necessary to analyze the failure cases of RNA activation to promote the application of RNA activation. When we validated the saRNAs designed to induce KLK1 expression, we found that saKLK1-374 can upregulate KLK1 expression in prostate tumor cell lines, but failed in normal prostate cell lines. To determine whether the RNA activation of normal cells is difficult only when the target gene is KLK1, we tested p21WAF1/CIP1 as the target gene in RNA activation experiments of normal and cancer prostate cells. Next, to determine whether the above phenomenon exists in other tissues, we used normal and cancerous bladder cells to perform RNA activation experiments with KLK1 and p21WAF1/CIP1 as targets. We have also extended the time from transfection to detection to evaluate whether a longer incubation time can make saRNA upregulate the target genes in normal cells. Fluorescently labeled dsRNA was transfected to evaluate the transfection efficiency, and the expression of Ago2 and IPO8 necessary for RNA activation was also detected. The p21WAF1/CIP1 could be significantly upregulated by saRNA in prostate cancer cells, but not in normal prostate cells. The expression of KLK1 in bladder-derived cell lines was extremely low and could not be induced by saRNA. The p21WAF1/CIP1 was upregulated by saRNA to a higher extent in bladder cancer cells but to a lower extent in normal bladder cells. Prolonging incubation time could not make saRNA induce the expression of target genes in normal cells. Compared with tumor cells used in this study, normal cells had lower transfection efficiency or lower expression of Ago2 and IPO8. Although it has been currently found that normal cell lines in the prostate and bladder might be more difficult to be successfully induced target gene expression by exogenous saRNA than tumor cells due to low transfection efficiency or Ago2 and IPO8 expression, it is not certain that this phenomenon occurs in other types of tissue. However, researchers still need to pay attention to the transfection efficiency and/or the expression levels of Ago2 and IPO8 when conducting RNA activation experiments in normal cells.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , RNA de Cadeia Dupla , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral
3.
Small ; 19(47): e2303053, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548122

RESUMO

The recent advancements of single-cell analysis have significantly enhanced the ability to understand cellular physiology when compared to bulk cellular analysis. Here a massively parallel single-cell patterning and very large biomolecular delivery is reported. Micro-pillar polydimethyl siloxane stamp with different diameters (40-100 µm with 1 cm × 1 cm patterning area) is fabricated and then imprint distinct proteins and finally pattern single-cell to small clusters of cells depending on the micro-pillar diameters. The maximum patterning efficiency is achieved 99.7% for SiHa, 96.75% for L929, and 98.6% for MG63 cells, for the 100 µm micro-pillar stamp. For intracellular delivery of biomolecules into the patterned cells, a titanium micro-dish device is aligned on top of the cells and exposed by infrared light pulses. The platform successfully delivers small to very large biomolecules such as PI dyes (668 Da), dextran 3000 Da, siRNA (20-24 bp), and large size enzymes (464 KDa) in SiHa, L929 and MG63 cells. The delivery efficiency for PI dye, Dextran 3000, siRNA, and enzyme for patterned cells are ≈95 ± 3%, 97 ± 1%, 96 ± 1% and 94 ± 3%, with cell viability of 98 ± 1%. Thus, the platform is compact, robust, easy for printing, and potentially applicable for single-cell therapy and diagnostics.


Assuntos
Dextranos , Proteínas , Animais , Impressão , Análise de Célula Única , RNA Interferente Pequeno , Mamíferos
4.
Biotechnol Bioeng ; 120(3): 659-673, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36385243

RESUMO

Chinese hamster ovary (CHO) cells are major host cells for biopharmaceuticals. During culture, the chromosome number of CHO cells alters spontaneously. Here, we investigated the effects of artificial changes in the chromosome number on productivity. When cell fusion between antibody-producing CHO-K1-derived cells was induced, we observed a wide range of aneuploidy that was not detected in controls. In particular, antibody productivities were high in clone-derived cell populations that retained a diverse chromosome number distribution. We also induced aneuploid cells using 3-aminobenzamide that causes chromosome non-disjunction. After induction of aneuploidy by 3-aminobenzamide, cells with an increased chromosome number were isolated, but cells with a decreased chromosome number could not be isolated. When antibody expression vectors were introduced into these isolated clones, productivity tended to increase in cells with an increased chromosome number. Further analysis was carried out by focusing on clone 5E8 with an average chromosome number of 37. When 5E8 cells were used as host, the productivity of multiple antibodies, including difficult-to-express antibodies, was improved compared with CHO-K1 cells. The copies of exogenous genes integrated into the genome were significantly increased in 5E8 cells. These findings expand the possibilities for host cell selection and contribute to the efficient construction of cell lines for recombinant protein production.


Assuntos
Aneuploidia , Anticorpos Monoclonais , Cricetinae , Animais , Cricetulus , Células CHO , Transfecção , Proteínas Recombinantes/genética , Cromossomos/química
5.
Genes Cells ; 26(9): 739-751, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34212463

RESUMO

Ectopic gene expression is an indispensable tool in biology and medicine, but is often limited by the low efficiency of DNA transfection. We previously reported that depletion of the autophagy receptor p62/SQSTM1 enhances DNA transfection efficiency by preventing the degradation of transfected DNA. Therefore, p62 is a potential target for drugs to increase transfection efficiency. To identify such drugs, a nonbiased high-throughput screening was applied to over 4,000 compounds from the Osaka University compound library, and their p62 dependency was evaluated. The top-scoring drugs were mostly microtubule inhibitors, such as colchicine and vinblastine, and all of them showed positive effects only in the presence of p62. To understand the p62-dependent mechanisms, the time required for p62-dependent ubiquitination, which is required for autophagosome formation, was examined using polystyrene beads that were introduced into cells as materials that mimicked transfected DNA. Microtubule inhibitors caused a delay in ubiquitination. Furthermore, the level of phosphorylated p62 at S405 was markedly decreased in the drug-treated cells. These results suggest that microtubule inhibitors inhibit p62-dependent autophagosome formation. Our findings demonstrate for the first time that microtubule inhibitors suppress p62 activation as a mechanism for increasing DNA transfection efficiency and provide solutions to increase efficiency.


Assuntos
Microtúbulos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Transfecção/métodos , Moduladores de Tubulina/farmacologia , Ubiquitinação , Animais , Células Cultivadas , Colchicina/farmacologia , Endocitose , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Camundongos , Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Vimblastina/farmacologia
6.
Bioorg Med Chem Lett ; 62: 128635, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202809

RESUMO

The chemical and physical structure of cationic liposomes pays an important effect on their gene transfection efficiency. Investigation on the structure-function relationship of cationic liposomes will guide the design of novel cationic liposomes with high transfection efficiency and biosafety. In this paper, two novel series of lipids based on the backbone of pentaerythritol and trimethylolpropane were discovered, and their gene transfection efficiencies were assayed in vitro. The four lipids 8c, 9c, 14b, and 15b, exhibited much better transfection efficiency in the HEK293 cell lines compared with Lipo2000, lipid 9c also showed good transfection efficiency in the SW480 cell lines. And the structure-efficiency relationship revealed that a hydroxyethyl polar head group boosted transfer potency in trimethylolpropane-type lipids, but reduced in pentaerythritol-type lipids.


Assuntos
Lipídeos , Lipossomos , Cátions/química , DNA/química , Células HEK293 , Humanos , Lipídeos/química , Lipídeos/farmacologia , Lipossomos/química , Propilenoglicóis , Transfecção
7.
Drug Dev Ind Pharm ; 48(1): 1-11, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35410574

RESUMO

Genetic medicines hold great promise for treatment of a number of diseases; however, the development of effective gene delivery carrier is still a challenge. The commonly used gene carrier liposomes and cationic polymers have limited their clinical application due to their respective disadvantages. Lipid-polymer hybrid nanoparticles (LHNPs) are novel drug delivery system that exhibit complementary characteristics of both polymeric nanoparticles and liposomes. In this account, we developed the α-cyclodextrin-conjugated generation-2 polyamidoamine dendrimers-lipids hybrid nanoparticles (CDG2-LHNPs) for gene delivery. The pDNA/CDG2-LHNPs was stable during 15 days of storage period both at 4 °C, 25 °C, and 37 °C, whereas the particle size of pDNA/CDG2 and pDNA/liposomes dramatically increased after storage at 4 °C for 8 h. CDG2-LHNPs showed significantly superior transfection efficiencies compared to either CDG2 or liposomes. The mechanism of high transfection efficiency of pDNA/CDG2-LHNPs was further explored using pharmacological inhibitors chlorpromazine, filipin, and cytochalasion D. The result demonstrated that cell uptake of pDNA/CDG2-LHNPs was mediated by clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME), and macropinocytosis together. pDNA/CDG2-LHNPs were more likely be taken up by cells through CvME, which avoided lysosomal degradation to a large extent. Moreover, the liposome component of pDNA/CDG2-LHNPs increased its cell uptake efficiency, and the CDG2 polymer component increased its proton buffer capacity, so the hybrid nanoparticles taken up by CME could also successfully escape from the lysosome. CDG2-LHNPs with stability and high-transfection efficiency overcome the shortcomings of liposomes and polymers applied separately, and have great potential for gene drug delivery.


Assuntos
Ciclodextrinas , Nanopartículas , Cátions , Lipídeos , Lipossomos/metabolismo , Polímeros , Transfecção
8.
Fish Physiol Biochem ; 48(3): 521-533, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35391635

RESUMO

Humpback grouper (Cromileptes altivelis), one kind of commercial fish with considerable economic value, has been recognized as a promising candidate for mariculture. In the wake of the development of aquaculture industry, the breeding density of C. altivelis has increased gradually, which gave rise to the occurrence of various pathogenic diseases. In our research, we established a new kidney cell line (designated as CAK) from humpback grouper and evaluated its susceptibility to bacteria and heavy metals. The results of our study showed that the optimal growth temperature was 26 °C, and optimal medium was L-15 supplemented with 20% fetal bovine serum (FBS). The sequencing of 18S rRNA gene indicated that CAK cell line was derived from C. altivelis. Chromosome analysis showed that the number of chromosome in CAK was 48. After being transfected of pEGFP-N3 plasmid, high transfection efficiency of CAK was observed, suggesting the potential to be used for the study of foreign functional genes. Moreover, the bacterial susceptibility results revealed that CAK cells were sensitive to Vibrio harveyi and Edwardsiella tarda, especially V. harveyi. Meanwhile, three heavy metals (Hg, Cu, and Cd) had toxic effects on the CAK cells with a dose-dependent manner. To sum up, the CAK cell line might be an ideal tool in vitro for analyzing the function of exogenous genes, bacterial susceptibility, and toxicity assay of heavy metals.


Assuntos
Bass , Doenças dos Peixes , Metais Pesados , Animais , Bass/genética , Linhagem Celular , Rim , Metais Pesados/toxicidade , Salmão
9.
AAPS PharmSciTech ; 23(5): 135, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534697

RESUMO

Lipid nanoparticles (LNPs) can be used as delivery vehicles for nucleic acid biotherapeutics. In fact, LNPs are currently being used in the Pfizer/BioNTech and Moderna COVID-19 vaccines. Cationic LNPs composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/cholesterol (chol) LNPs have been classified as one of the most efficient gene delivery systems and are being tested in numerous clinical trials. The objective of this study was to examine the effect of the molar ratio of DOTAP/chol, PEGylation, and lipid to mRNA ratio on mRNA transfection, and explore the applications of DOTAP/chol LNPs in pDNA and oligonucleotide transfection. Here we showed that PEGylation significantly decreased mRNA transfection efficiency of DOTAP/chol LNPs. Among non-PEGylated LNP formulations, 1:3 molar ratio of DOTAP/chol in DOTAP/chol LNPs showed the highest mRNA transfection efficiency. Furthermore, the optimal ratio of DOTAP/chol LNPs to mRNA was tested to be 62.5 µM lipid to 1 µg mRNA. More importantly, these mRNA-loaded nanoparticles were stable for 60 days at 4 °C storage without showing reduction in transfection efficacy. We further found that DOTAP/chol LNPs were able to transfect pDNA and oligonucleotides, demonstrating the ability of these LNPs to transport the cargo into the cell nucleus. The influence of various factors in the formulation of DOTAP/chol cationic LNPs is thus described and will help improve drug delivery of nucleic acid-based vaccines and therapies.


Assuntos
COVID-19 , Nanopartículas , Vacinas contra COVID-19 , Cátions , Colesterol , Ácidos Graxos Monoinsaturados , Humanos , Lipossomos , Oligonucleotídeos , Propano , Compostos de Amônio Quaternário , RNA Mensageiro/genética
10.
Mol Pharm ; 18(9): 3452-3463, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34387498

RESUMO

Gene therapy aims to treat patients by altering or controlling gene expression. The field of gene therapy has had increasing success in recent years primarily using viral-based approaches; however, there is still significant interest toward the use of polymeric materials due to their potential as flexible, low-cost scaffolds for gene delivery that do not suffer the mutagenesis and immunogenicity concerns of viral vectors. To address the challenges of efficiency and biocompatibility, a series of zwitterion-like polyethylenimine derivatives (zPEIs) were produced via the succinylation of 2-11.5% of polyethylenimine (PEI) amines. With increasing modification, zPEI polyplexes exhibited decreased serum-protein aggregation and dissociated more easily in the presence of a competitor polyanion when compared to unmodified PEI. Surprisingly, the gene delivery mediated in the presence of serum showed that succinylation of as few as 2% of PEI amines resulted in transgene expression 260- to 480-fold higher than that of unmodified PEI and 50- to 65-fold higher than that of commercial PEI-PEG2k in HEK293 and HeLa cells, respectively. Remarkably, the same zPEIs also produced 16-fold greater efficiency of CRISPR/Cas9 gene knock-in compared to unmodified PEI in the presence of serum. In addition, we show that 2% succinylation does not significantly decrease polymer/DNA binding ability or serum protein interaction to a significant extent, yet this small modification is still sufficient to provide a remarkable increase in transgene expression and gene knock-in in the presence of serum.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Polietilenoimina/química , Técnicas de Introdução de Genes , Células HEK293 , Células HeLa , Humanos , Polietilenoimina/análogos & derivados , Reparo de DNA por Recombinação
11.
J Fish Biol ; 98(3): 842-854, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33258111

RESUMO

The aquaculture of tilapia (Oreochromis sp.) is adversely affected by the sensitivity to cold stress. A large number of genes in tilapia were found to be regulated by cold stress, but their functions and mechanisms in cold tolerance remain largely unknown, partially due to the lack of a suitable in vitro model. An immortal neural cell line designated as tilapia brain neural (TBN) was established from brain tissue of the genetically improved farmed tilapia strain of Nile tilapia (Oreochromis niloticus). The TBN cells show a neuron-like morphology at low density and form a fibroblast-like monolayer at high density. Transcriptome profiling through RNA-sequencing revealed that a total of 15,011 genes were expressed in the TBN cells. The TBN cells express a wide array of marker genes for neural cells. A comparative analysis of the featured genes among the 17 cell clusters isolated from the subventricular zone of mouse brain revealed the highest transcriptome similarity between the TBN cells and the transient amplifying progenitors (TAPs). The TBN cells tolerate relatively high culture temperatures, and the highest growth rate was observed for the cells cultured at 32°C compared with those at 30°C, 28°C and 26°C. Nonetheless, this cell line is cold sensitive. Exposure of the cells to 16°C or lower temperatures significantly decreased cell confluences and induced apoptosis. The TBN cells were more sensitive to cold stress than the ZF4 cells (embryonic zebrafish fibroblasts). Moreover, the TBN cells can be efficiently transfected through electroporation. This study provides an invaluable research tool to understand the nature of cold sensitivity of tilapia and to dissect the function and mechanism of genes in regulating cold tolerance of fish.


Assuntos
Encéfalo/citologia , Linhagem Celular , Ciclídeos/fisiologia , Animais , Temperatura Baixa , Perfilação da Expressão Gênica , Camundongos , Neurônios/citologia , Transcriptoma
12.
Fish Physiol Biochem ; 47(5): 1645-1658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34448109

RESUMO

Cromileptes altivelis, humpback grouper, belongs to the family Epinephelidae and is one popular farmed fish species because of its high economic value and ornamental value. However, more and more diseases outbreaks have been reported with C. altivelis aquaculture. Today, a new brain cell line of C. altivelis (named CAB) was established and characterized. Our results showed that CAB cells were suitable for growth at 26 °C in L-15 medium supplemented with 15% fetal bovine serum (FBS). The results of 18S rRNA gene sequencing confirmed that CAB cell line was derived from C. altivelis. Moreover, chromosomal aneuploidy was observed in CAB cells, and the modal chromosome number of CAB cells was 48 by chromosome analysis. In addition, CAB cells could transfect pEGFP-N3 plasmid with high transfection efficiency, indicating that CAB cell line has the potential to investigate the function of exogenous genes in vitro. Furthermore, the bacterial susceptibility results suggested that CAB cells were susceptive to Vibrio harveyi and Edwardsiella tarda. And, heavy metals (Hg, Cd, and Cu) were toxic to the CAB cells, and the toxic effect was dose-dependent. In summary, the CAB cell line could be a powerful tool in vitro to study functional genes and has the potential application in bacterial susceptibility and toxicology.


Assuntos
Bass , Linhagem Celular , Doenças dos Peixes , Animais , Encéfalo , Edwardsiella tarda , Salmão , Toxicologia
13.
Int J Mol Sci ; 21(23)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291321

RESUMO

Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of carriers to protect them from degradation and transporting them across the cell membrane. There is no information about which is the most efficient endocytosis route for high siRNA transfection efficiency. One of the most promising carriers to efficiently deliver siRNA are cyclodextrin derivatives. We have used nanocomplexes composed of siRNA and a ß-cyclodextrin derivative, AMC6, with a very high transfection efficiency to selectively knockdown clathrin heavy chain, caveolin 1, and p21 Activated Kinase 1 to specifically block clathrin-mediated, caveolin-mediated and macropinocytosis endocytic pathways. The main objective was to identify whether there is a preferential endocytic pathway associated with high siRNA transfection efficiency. We have found that macropinocytosis is the preferential entry pathway for the nanoparticle and its associated siRNA cargo. However, blockade of macropinocytosis does not affect AMC6-mediated transfection efficiency, suggesting that macropinocytosis blockade can be functionally compensated by an increase in clathrin- and caveolin-mediated endocytosis.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Nanopartículas/metabolismo , Pinocitose , RNA Interferente Pequeno/genética , Transfecção/métodos , Animais , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Ratos , beta-Ciclodextrinas/química
14.
Fish Physiol Biochem ; 46(6): 1897-1907, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32588157

RESUMO

The humpback grouper (Cromileptes altivelis) is a commercially important species of the family Epinephelidae. With the development in aquaculture industry, C. altivelis breeding has gradually increased in volumetric production, leading to the occurrence of various diseases. In this study, we established a new cell line (CAM) derived from the muscle tissue of C. altivelis. Our results showed that the optimal growth temperature and working concentration of fetal bovine serum (FBS) of CAM cells were 28 °C and 15%, respectively. DNA sequencing and comparative analysis of 18S rRNA gene sequence showed that CAM cell line was originated from C. altivelis. Chromosome analysis showed that the modal chromosome number of CAM cells was 48. After transfection using pEGFP-N3 plasmid, CAM cells exhibited high transfection efficiency, indicating that CAM cells could be used in foreign gene expression studies. Further, cytotoxicity analysis revealed that CAM cells were sensitive to Vibrio harveyi and Edwardsiella tarda. Moreover, the cytotoxicity of heavy metals (Hg, Cd, and Cu) to CAM cells was dose-dependent. This CAM cell line might be used as an ideal tool in vitro for analyzing and understanding the mechanisms of pathogenesis, host-pathogen interactions, and toxicity assay of heavy metals.


Assuntos
Músculos/citologia , Perciformes , Animais , Ciclo Celular , Linhagem Celular , Cromossomos , Criopreservação , DNA/análise , Edwardsiella tarda , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes , Proteínas de Fluorescência Verde/genética , Metais Pesados/toxicidade , Perciformes/genética , Transfecção , Vibrio , Vibrioses/veterinária
15.
J Cell Biochem ; 120(10): 16967-16977, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31099062

RESUMO

At present, nonviral gene vectors develop rapidly, especially cationic polymers. A series of bioreducible poly(amide amine) (PAA) polymers containing guanidino groups have been synthesized by our research team. These novel polymer vectors demonstrated significantly higher transfection efficiency and lower cytotoxicity than polyethylenimine (PEI)-25kDa. However, compared with viral gene vectors, relatively low transfection efficiency, and high cytotoxicity are still critical problems confronting these polymers. In this study, poly(agmatine/N,N'-cystamine-bis-acrylamide) p(AGM-CBA) was selected as a model polymer, nuclear localization signal (NLS) peptide PV7 (PKKKRKV) with good biocompatibility and nuclear localization effect was introduced to investigate its impact on transfection efficiency and cytotoxicity. NLS peptide-mediated in vitro transfection was performed in NIH 3T3 cells by directly incorporating NLS peptide with the complexes of p(AGM-CBA)/pDNA. Meanwhile, the transfection efficiency and cytotoxicity of these complexes were evaluated. The results showed that the transfection efficiency could be increased by 5.7 times under the appropriate proportion, and the cytotoxicity brought by the polymer vector could be significantly reduced.


Assuntos
Acrilamidas/toxicidade , Agmatina/toxicidade , DNA/química , Sinais de Localização Nuclear/farmacologia , Poliaminas/toxicidade , Células 3T3 , Animais , Linhagem Celular , Membrana Celular/fisiologia , Camundongos , Sinais de Localização Nuclear/química , Transfecção
16.
Anal Biochem ; 587: 113465, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585099

RESUMO

DNA transfection in cells is a key technique in biological studies. Cationic liposomes can form nanoparticle complexes with DNA and are widely used for gene delivery in mammalian cells. However, the major drawback of cationic liposomes is their low transfection efficiency in hard-to-transfect cells, such as primary cultured cells. In this study, we established a novel semi-attachment transfection method that showed remarkably improved transfection efficiency compared with traditional forward transfection method.


Assuntos
DNA/genética , Cátions/química , DNA/química , Humanos , Lipossomos/química , Nanopartículas/química , Transfecção , Células Tumorais Cultivadas
17.
Mol Pharm ; 16(4): 1596-1605, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865465

RESUMO

Glatiramer acetate (GA) is the active substance of Teva's Copaxone drug, which contains random polypeptides used to treat multiple sclerosis. Glatiramer acetate was originally developed to emulate human myelin basic protein, which contains four different residues [alanine (A), glutamic acid (E), tyrosine (T), and lysine (K)]. We found that GA can complex, condense, and transfect plasmid DNA. Mixing the positively charged GA and the negatively charged genetic material in correct proportions produced small, stable, and highly positively charged nanoparticles. This simple GA-pDNA formulation produced high levels of transfection efficiency with low toxicity in HeLa and A549 cells (lung and cervical cancer cells). Additionally, we studied and compared the nanoparticle properties, gene expression, and cytotoxicity of K100-pDNA (high-molecular-weight polylysine) and K9-pDNA (low-molecular-weight polylysine) nanoparticles to those of GA-pDNA nanoparticles. We also studied the effect of calcium, which was previously reported to reduce the size and enhance gene expression resulting from similar polyelectrolyte complexes. Adding calcium did not reduce particle size, nor improve the transfection efficiency of GA-pDNA nanoparticles as it did for polylysine-pDNA nanoparticles. GA-pDNA nanoparticles may be prepared by mixing a genetic payload with approved GA therapeutics (e.g., Copaxone), thus offering intriguing possibilities for translational gene therapy studies.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Proliferação de Células , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Acetato de Glatiramer/administração & dosagem , Nanopartículas/administração & dosagem , Polietilenoimina/química , Células A549 , Células HeLa , Humanos
18.
J Cell Biochem ; 119(2): 1767-1779, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28796282

RESUMO

Previously, we synthesized a non-viral vector containing disulfide bond by polymerization of agamatine (AGM) and N,N'-cystaminebisacrylamide (CBA). In this study, we investigated the transfection efficiency of disulfide bond (SS) containing AGM-CBA polymer in gene delivery into NIH/3T3 cells, and examined the factors affecting its transfection efficiency by comparing with polyethylenimine (PEI). In addition, experiments were carried out to determine the mechanisms of cell entry pathways and intracellular behavior of AGM-CBA/pDNA polyplexes. The transfection efficiency of AGM-CBA/pDNA with different weight ratios and different amounts of pDNA was measured and the pathways mediated transfection processes were studied by using various endocytosis inhibitors. To determine the intracellular behavior of AGM-CBA/pDNA polyplexes, the transfection efficiencies of AGM-CBA/pDNA and PEI/pDNA polyplexes with different combination structures were determined by using reporter gene and fake plasmid DNA. The transfection efficiency of AGM-CBA/pDNA polyplexes was correlated with its weight ratio of AGM-CBA and pDNA, and the amount of pDNA. Both AGM-CBA/pDNA and PEI/pDNA polyplexes enter into cell by clathrin- and caveolae-mediated endocytic pathways. However, AGM-CBA/pDNA showed different intracellular behavior in NIH/3T3 cells compared to PEI/pDNA polyplexes. It was hypothesized that disulfide bond in AGM-CBA could be an important factor contributing to its intracellular behavior and better transfection efficiency. Overall, AGM-CBA demonstrated better transfection efficiency and lower cytotoxicity than PEI in NIH/3T3 cells as a gene delivery vector.


Assuntos
Guanidinas/química , Plasmídeos/genética , Polietilenoimina/farmacologia , Polímeros/farmacologia , Transfecção/métodos , Acrilamidas/química , Animais , Cavéolas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Clatrina/metabolismo , Dissulfetos/química , Endocitose , Camundongos , Células NIH 3T3 , Plasmídeos/administração & dosagem , Polimerização , Polímeros/química
19.
Biochem Biophys Res Commun ; 503(2): 508-512, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29733845

RESUMO

Recent advances in biochemical and biophysical research have been achieved through the employment of microfluidic devices. Microfluidic mixing of therapeutic agents with biomaterials yields systems with finely tuned physical-chemical properties for applications in drug and gene delivery. Here, we investigate the role of preparation technology (microfluidic mixing vs. bulk self-assembly) on the transfection efficiency (TE) and cytotoxicity of multicomponent cationic liposome/DNA complexes (lipoplexes) in live Chinese hamster ovarian (CHO) cells. Decoupling TE and cytotoxicity allowed us to combine them in a unique coherent vision. While bulk self-assembly produces highly efficient and highly toxic MC lipoplexes, microfluidics manufacture leads to less efficient, but less cytotoxic complexes. This discrepancy is ascribed to two main factors controlling lipid-mediated cell transfection, i.e. the lipoplex concentration at the cell surface and the lipoplex arrangement at the nanoscale. Further research is required to optimize microfluidic manufacturing of lipoplexes to obtain highly efficient and not cytotoxic gene delivery systems.


Assuntos
DNA/administração & dosagem , Lipídeos/química , Lipossomos/química , Transfecção/métodos , Animais , Células CHO , Cátions/química , Cricetulus , DNA/química , DNA/genética , Desenho de Equipamento , Dispositivos Lab-On-A-Chip
20.
Anal Biochem ; 544: 93-97, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29305095

RESUMO

Adherent cells such as mouse RAW cells or human cancer U2OS cells are beneficial to DNA transfection, with 20%-60% transfection efficiency. However, this DNA transfection is rarely used on suspension cells due to its low transfection efficiency (≤5%). We recently found a new DNA transfection method to increase the efficiency up to 13.5% in suspension cells without PMA treatment. We also found that DNA transfection of human TNFAIP1 or CXCL1 recombinant plasmid DNA in THP-1 cells induces a high level of TNF-α protein. Overall, this new method is simple yet efficient and can be used for the overexpression of DNA in suspension cells.


Assuntos
Transfecção , Células Cultivadas , DNA/genética , Humanos , Plasmídeos/genética , Células THP-1 , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA