Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Neuroinflammation ; 21(1): 185, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080670

RESUMO

BACKGROUND: Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aß plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS: In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS: Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aß plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS: Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.


Assuntos
Doença de Alzheimer , Encéfalo , Modelos Animais de Doenças , Fosfolipídeos , Ratos Transgênicos , Proteínas tau , Animais , Fosfolipídeos/metabolismo , Ratos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Placa Amiloide/metabolismo , Masculino , Humanos
2.
Acta Neuropathol ; 148(1): 25, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160375

RESUMO

Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.


Assuntos
Encéfalo , Ratos Transgênicos , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Ratos , Encéfalo/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Príons/metabolismo , Príons/genética , Tauopatias/patologia , Tauopatias/metabolismo , Tauopatias/genética , Degeneração Neural/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Mutação
3.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201296

RESUMO

Luminescent technology based on the luciferin-luciferase reaction has been extensively employed across various disciplines as a quantitative imaging modality. Owing to its non-invasive imaging capacity, it has evolved as a valuable in vivo bioimaging tool, particularly in small animal models in fields such as gene and cell therapies. We have previously successfully generated rats with a systemic expression of the luciferase gene at the Rosa26 locus. In this study, we transplanted bone marrow from these rats into micro-mini pigs and used in vivo imaging to non-invasively analyze the dynamics of the transplanted cells. In addition, we established that the rat-to-pig transplantation system is a discordant system, similar to the pig-to-human transplantation system. Thus, rat-to-pig transplantation may provide a clinically appropriate large animal model for pig-to-human xenotransplantation.


Assuntos
Transplante de Medula Óssea , Luciferases , Porco Miniatura , Transplante Heterólogo , Animais , Suínos , Ratos , Transplante de Medula Óssea/métodos , Transplante Heterólogo/métodos , Luciferases/metabolismo , Luciferases/genética , Humanos , Medições Luminescentes/métodos , Xenoenxertos , Luciferina de Vaga-Lumes/metabolismo , Luciferina de Vaga-Lumes/química
4.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396840

RESUMO

The therapeutic management of Crohn's disease (CD), a chronic relapsing-remitting inflammatory bowel disease (IBD), is highly challenging. Surgical resection is sometimes a necessary procedure even though it is often associated with postoperative recurrences (PORs). Tofacitinib, an orally active small molecule Janus kinase inhibitor, is an anti-inflammatory drug meant to limit PORs in CD. Whereas bidirectional interactions between the gut microbiota and the relevant IBD drug are crucial, little is known about the impact of tofacitinib on the gut microbiota. The HLA-B27 transgenic rat is a good preclinical model used in IBD research, including for PORs after ileocecal resection (ICR). In the present study, we used shotgun metagenomics to first delineate the baseline composition and determinants of the fecal microbiome of HLA-B27 rats and then to evaluate the distinct impact of either tofacitinib treatment, ileocecal resection or the cumulative effect of both interventions on the gut microbiota in these HLA-B27 rats. The results confirmed that the microbiome of the HLA-B27 rats was fairly different from their wild-type littermates. We demonstrated here that oral treatment with tofacitinib does not affect the gut microbial composition of HLA-B27 rats. Of note, we showed that ICR induced an intense loss of bacterial diversity together with dramatic changes in taxa relative abundances. However, the oral treatment with tofacitinib neither modified the alpha-diversity nor exacerbated significant modifications in bacterial taxa induced by ICR. Collectively, these preclinical data are rather favorable for the use of tofacitinib in combination with ICR to address Crohn's disease management when considering microbiota.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Microbiota , Piperidinas , Pirimidinas , Ratos , Animais , Doença de Crohn/tratamento farmacológico , Doença de Crohn/cirurgia , Doença de Crohn/complicações , Ratos Transgênicos , Antígeno HLA-B27 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/complicações , Gerenciamento Clínico
5.
Neurobiol Dis ; 184: 106227, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454780

RESUMO

Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), clinically present with progressive cognitive decline and the deposition of neurofibrillary tangles (NFTs) in the brain. Neurovascular compromise is also prevalent in AD and FTD however the relationship between tau and the neurovascular unit is less understood relative to other degenerative phenotypes. Current animal models confer the ability to recapitulate aspects of the CNS tauopathies, however, existing models either display overaggressive phenotypes, or do not develop neuronal loss or genuine neurofibrillary lesions. In this report, we communicate the longitudinal characterization of brain tauopathy in a novel transgenic rat model, coded McGill-R955-hTau. The model expresses the longest isoform of human P301S tau. Homozygous R955-hTau rats displayed a robust, progressive accumulation of mutated human tau leading to the detection of tau hyperphosphorylation and cognitive deficits accelerating from 14 months of age. This model features extensive tau hyperphosphorylation with endogenous tau recruitment, authentic neurofibrillary lesions, and tau-associated neuronal loss, ventricular dilation, decreased brain volume, and gliosis in aged rats. Further, we demonstrate how neurovascular integrity becomes compromised at aged life stages using a combination of electron microscopy, injection of the tracer horseradish peroxidase and immunohistochemical approaches.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Pick , Tauopatias , Camundongos , Humanos , Ratos , Animais , Idoso , Ratos Transgênicos , Proteínas tau/genética , Demência Frontotemporal/patologia , Camundongos Transgênicos , Tauopatias/patologia , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Modelos Animais de Doenças
6.
Neurobiol Dis ; 187: 106317, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37802153

RESUMO

In tauopathies such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), the microtubule associated protein tau undergoes conformational and posttranslational modifications in a gradual, staged pathological process. While brain atrophy and cognitive decline are well-established in the advanced stages of tauopathy, it is unclear how the early pathological processes manifest prior to extensive neurodegeneration. For these studies we have applied a transgenic rat model of human-like tauopathy in its heterozygous form, named McGill-R955-hTau. The goal of the present study was to investigate whether lifelong accumulation of mutated human tau could reveal the earliest tau pathological processes in a context of advanced aging, and, at stages before the overt aggregated or fibrillary tau deposition. We characterized the phenotype of heterozygous R955-hTau rats at three endpoints, 10, 18 and 24-26 months of age, focusing on markers of cognitive capabilities, progressive tau pathology, neuronal health, neuroinflammation and brain ultrastructural integrity, using immunohistochemistry and electron microscopy. Heterozygous R955-hTau transgenic rats feature a modest, life-long accumulation of mutated human tau that led to tau hyperphosphorylation and produced deficits in learning and memory tasks after 24 months of age. Such impairments coincided with more extensive tau hyperphosphorylation in the brain at residues pThr231 and with evidence of oligomerization. Importantly, aged R955-hTau rats presented evidence of neuroinflammation, detriments to myelin morphology and detectable hippocampal neuronal loss in the absence of overt neurofibrillary lesions and brain atrophy. The slow-progressing tauopathy of R955-hTau rats should allow to better delineate the temporal progression of tau pathological events and therefore to distinguish early indicators of tauopathy as having the capability to induce degenerative events in the aged CNS.


Assuntos
Doenças Neuroinflamatórias , Tauopatias , Humanos , Camundongos , Ratos , Animais , Idoso , Camundongos Transgênicos , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Ratos Transgênicos , Atrofia , Modelos Animais de Doenças
7.
Neurobiol Dis ; 184: 106193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295561

RESUMO

Dravet syndrome (DS) is a debilitating infantile epileptic encephalopathy characterized by seizures induced by high body temperature (hyperthermia), sudden unexpected death in epilepsy (SUDEP), cognitive impairment, and behavioral disturbances. The most common cause of DS is haploinsufficiency of the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1. In current mouse models of DS, the epileptic phenotype is strictly dependent on the genetic background and most mouse models exhibit drastically higher SUDEP rates than patients. Therefore, we sought to develop an alternative animal model for DS. Here, we report the generation and characterization of a Scn1a halploinsufficiency rat model of DS by disrupting the Scn1a allele. Scn1a+/- rats show reduced Scn1a expression in the cerebral cortex, hippocampus and thalamus. Homozygous null rats die prematurely. Heterozygous animals are highly susceptible to heat-induced seizures, the clinical hallmark of DS, but are otherwise normal in survival, growth, and behavior without seizure induction. Hyperthermia-induced seizures activate distinct sets of neurons in the hippocampus and hypothalamus in Scn1a+/- rats. Electroencephalogram (EEG) recordings in Scn1a+/- rats reveal characteristic ictal EEG with high amplitude bursts with significantly increased delta and theta power. After the initial hyperthermia-induced seizures, non-convulsive, and convulsive seizures occur spontaneously in Scn1a+/- rats. In conclusion, we generate a Scn1a haploinsufficiency rat model with phenotypes closely resembling DS, providing a unique platform for establishing therapies for DS.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Convulsões Febris , Morte Súbita Inesperada na Epilepsia , Camundongos , Animais , Ratos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Convulsões/genética , Neurônios/metabolismo , Febre/complicações , Febre/genética , Modelos Animais de Doenças
8.
Biochem Biophys Res Commun ; 648: 28-35, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36724557

RESUMO

Methylated CpG binding protein 2 (MeCP2) plays an important role in the development and normal function of the neural system. Abnormally high expression of MECP2 leads to a subtype of autism called MECP2 duplication syndrome and MECP2 is considered one of the key pathogenic genes for autism spectrum disorders. However, the effect of MECP2 overexpression on neural activity is still not fully understood. Thus, transgenic (TG) animals that abnormally overexpress MeCP2 are important disease models in research on neurological function and autism. To create an animal model with a stronger and more stable autism phenotype, this study established a human MECP2 TG rat model and evaluated its movement ability, anxiety, and social behavior through behavioral tests. The results showed that MECP2 TG rats had an abnormally increased anxiety phenotype and social deficits in terms of abnormal social approach and social novelty preference, but no movement disorder. These autism-like behavioral phenotypes suggest that human MECP2 TG rats are suitable models for studying autism as they show more severe social deficit phenotypes and without interference from movement disorders affecting other phenotypes, which is an issue for mouse models with MECP2 duplication. In addition, this study performed preliminary exploration of the influence of the human MECP2 transgene on neural oscillation stability of the medial prefrontal cortex (mPFC), which is an important brain region for social interactions. Oscillation stability in MECP2 TG rats showed abnormal responses to social conditions. Overall, the results of this study provide a new research tool for understanding the mechanism of social impairment and treatment of autism. The results also provide evidence for the influence of MECP2 duplication on mPFC neural activity.


Assuntos
Transtorno Autístico , Deficiência Intelectual Ligada ao Cromossomo X , Proteína 2 de Ligação a Metil-CpG , Animais , Humanos , Camundongos , Ratos , Ansiedade/genética , Transtorno Autístico/genética , Encéfalo/metabolismo , Modelos Animais de Doenças , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Transgênicos , Ratos Transgênicos
9.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768230

RESUMO

Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood-brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART.


Assuntos
Infecções por HIV , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Ratos , Animais , Humanos , Adolescente , Barreira Hematoencefálica/metabolismo , Canais de Cátion TRPM/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Células Endoteliais/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Ratos Transgênicos , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
10.
Biochem Biophys Res Commun ; 610: 77-84, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447498

RESUMO

Specific amino acid substitutions in degenerin mechano-gated channels (DEGs) of C. elegans convert these channels into constitutively active mutants that induce the degeneration of neurons where DEGs are expressed. Acid-sensing ion channel-2a (ASIC2a), a proton-gated cation channel predominantly expressed in central neurons, is a mammalian ortholog of DEGs, and it can remain unclosed to be cytotoxic once the same mutations as the DEG mutants are introduced into its gene. Here we show that heterozygous transgenic (Tg) rats expressing ASIC2a-G430F (ASIC2aG430F), the most active form of the gain-of-function mutants, under the control of the intrinsic ASIC2a promoter exhibited marked cerebellar maldevelopment with mild whole-brain atrophy. The Tg rats were small and developed an early-onset ataxic gait, as evidenced by rotarod and footprint tests. The overall gross-anatomy of the Tg brain was normal just after birth, but a reduction in brain volume, especially cerebellar volume, gradually emerged with age. Histological examination of the adult Tg brain revealed that the cell-densities of cerebellar Purkinje and granule cells were markedly reduced, while the cytoarchitecture of other brain regions was not significantly altered. RT-PCR and immunoblot analyses demonstrated that ASIC2aG430F transcripts and proteins were already present in various regions of the neonatal Tg brain before the deforming cerebellum became apparent. These results suggest that, according to the spatiotemporal pattern of the wild-type (WT) ASIC2a gene expression, the ASIC2aG430F channel induced lethal degeneration in Tg brain neurons expressing both ASIC2aG430F and ASIC2a channels.


Assuntos
Canais Iônicos Sensíveis a Ácido , Cerebelo , Mutação com Ganho de Função , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Cerebelo/patologia , Mutação , Ratos
11.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R161-R169, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018823

RESUMO

Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.


Assuntos
Arginina Vasopressina/genética , Proteínas de Fluorescência Verde/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Hipovolemia/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipovolemia/genética , Hipovolemia/fisiopatologia , Injeções Intraperitoneais , Masculino , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Polietilenoglicóis/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Transgênicos , Ratos Wistar , Solução Salina Hipertônica/administração & dosagem , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/fisiopatologia , Fatores de Tempo , Regulação para Cima
12.
Int J Neuropsychopharmacol ; 25(9): 786-793, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35882205

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a genetic condition that causes a range of developmental problems, including intellectual disability, aggressive behavior, anxiety, abnormal sensory processing, and cognitive impairment. Despite intensive preclinical research in Fmr1-targeted transgenic mice, an effective treatment for FXS has yet to be developed. We previously demonstrated that ASP5736, a 5-Hydroxytryptamine (serotonin) receptor 5A receptor antagonist, ameliorated scopolamine-induced working memory deficits in mice, reference memory impairment in aged rats, and methamphetamine-induced positive symptoms and phencyclidine-induced cognitive impairment in animal models of schizophrenia. We hypothesized that ASP5736 may be effective for ameliorating similar behavior deficits in male Fmr1-targeted transgenic rats as a preclinical model of FXS. METHODS: We evaluated the effect of acute oral administration of ASP5736 on the abnormal behavior of hyperactivity (0.01, 0.1 mg/kg), prepulse inhibition (0.01, 0.03, 0.1 mg/kg), and the novel object recognition task (0.1 mg/kg) in Frmr1-knockout (KO) rats. RESULTS: Fmr1-KO rats showed body weight gain, hyperactivity, abnormal sensory motor gating, and cognitive impairment. ASP5736 (0.1 mg/kg) reversed the hyperactivity and ameliorated the sensory motor gating deficits (0.03-0.1 mg/kg). ASP5736 (0.01 mg/kg) also improved cognitive impairment. CONCLUSIONS: ASP5736 is a potential drug candidate for FXS. Further studies are needed to confirm its clinical efficacy.


Assuntos
Síndrome do Cromossomo X Frágil , Metanfetamina , Animais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/uso terapêutico , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Guanidinas , Isoquinolinas , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Knockout , Fenciclidina/uso terapêutico , Ratos , Ratos Transgênicos , Receptores de Serotonina , Escopolamina/uso terapêutico , Serotonina , Antagonistas da Serotonina/farmacologia
13.
Cell Mol Neurobiol ; 42(1): 125-136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32997211

RESUMO

The close relationship between Alzheimer's disease (AD) and obesity was recognized many years ago. However, complete understanding of the pathological mechanisms underlying the interactions between degeneration of CNS and fat metabolism is still missing. The leptin a key adipokine of white adipose tissue has been suggested as one of the major mediators linking the obesity and AD. Here we investigated the association between peripheral levels of leptin, general metabolic status and stage of the pathogenesis in rat transgenic model of AD. We demonstrate significantly decreased levels of plasma leptin in animals with experimentally induced progressive neurofibrillary pathology, which represents only 62.3% (P = 0.0015) of those observed in normal wild type control animals. More detailed analysis showed a strong and statistically significant inverse correlation between the load of neurofibrillary pathology and peripheral levels of leptin (r = - 0.7248, P = 0.0177). We also observed a loss of body weight during development of neurodegeneration (about 14% less than control animals, P = 0.0004) and decrease in several metabolic parameters such as glucose, insulin, triglycerides and VLDL in plasma of the transgenic animals. Our data suggest that plasma leptin could serve as a convenient peripheral biomarker for tauopathies and Alzheimer's disease. Decrease in gene expression of leptin in fat tissue and its plasma level was found as one of the consequences of experimentally induced neurodegeneration. Our data may help to design rational diagnostic and therapeutic strategies for patients suffering from Alzheimer's disease or other forms of tauopathy.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Humanos , Leptina/metabolismo , Obesidade , Ratos , Proteínas tau/metabolismo
14.
FASEB J ; 35(11): e21934, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34599778

RESUMO

Dysfunction of the ATPase-binding Cassette Transporter protein (ABCA4) can lead to early onset macular degeneration, in particular to Stargardt disease. To enable translational research into this form of blindness, we evaluated the effect of Cas9-induced disruptions of the ABCA4 gene to potentially generate new transgenic rat models of the disease. We show that deletion of the short exon preceding the second nucleotide-binding domain is sufficient to drastically knock down protein levels and results in accumulation of retinoid dimers similar to that associated with Stargardt disease. Overexpression of the retinol dehydrogenase enzymes RDH8 and RDH12 can to a limited extent offset the increase in the bisretinoid levels in the Abca4Ex42-/ - KO rats possibly by restricting the time window in which retinal can dimerize before being reduced to retinol. However, in vivo imaging shows that overexpression of RDH8 can induce retinal degeneration. This may be due to the depletion in the outer segment of the cofactor NADPH, needed for RDH function. The translational potential of RDH therapy as well as other Stargardt disease therapies can be tested using the Abca4 knockdown rat model.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Técnicas de Transferência de Genes , Doença de Stargardt/enzimologia , Doença de Stargardt/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , NADP/metabolismo , Células Fotorreceptoras/metabolismo , Ratos , Ratos Transgênicos , Vitamina A/metabolismo
15.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35886975

RESUMO

Background. For neurodegenerative diseases such as Huntington's disease (HD), early diagnosis is essential to treat patients and delay symptoms. Impaired olfaction, as observed as an early symptom in Parkinson´s disease, may also constitute a key symptom in HD. However, there are few reports on olfactory deficits in HD. Therefore, we aimed to investigate, in a transgenic rat model of HD: (1) whether general olfactory impairment exists and (2) whether there are disease-specific dynamics of olfactory dysfunction when the vomeronasal (VNE) and main olfactory epithelium (MOE) are compared. Methods. We used male rats of transgenic line 22 (TG22) of the bacterial artificial chromosome Huntington disease model (BACHD), aged 3 days or 6 months. Cell proliferation, apoptosis and macrophage activity were examined with immunohistochemistry in the VNE and MOE. Results. No differences were observed in cellular parameters in the VNE between the groups. However, the MOE of the 6-month-old HD animals showed a significantly increased number of mature olfactory receptor neurons. Other cellular parameters were not affected. Conclusions. The results obtained in the TG22 line suggest a relative stability in the VNE, whereas the MOE seems at least temporarily affected.


Assuntos
Doença de Huntington , Transtornos do Olfato , Neurônios Receptores Olfatórios , Animais , Cromossomos Artificiais Bacterianos , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Masculino , Transtornos do Olfato/metabolismo , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Ratos , Ratos Transgênicos
16.
J Neurochem ; 159(2): 273-291, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218440

RESUMO

Cerebral amyloid angiopathy (CAA), a prevalent cerebral small vessel disease in the elderly and a common comorbidity of Alzheimer's disease, is characterized by cerebral vascular amyloid accumulation, cerebral infarction, microbleeds, and intracerebral hemorrhages and is a prominent contributor to vascular cognitive impairment and dementia. Here, we investigate proteome changes associated with specific pathological features in several brain regions of rTg-DI rats, a preclinical model of CAA. Whereas varying degrees of microvascular amyloid and associated neuroinflammation are found in several brain regions, the presence of microbleeds and occluded small vessels is largely restricted to the thalamic region of rTg-DI rats, indicating different levels of CAA and associated pathologies occur in distinct brain regions in this model. Here, using SWATHLC-MS/MS, we report specific proteomic analysis of isolated brain regions and employ pathway analysis to correlate regionally specific proteomic changes with uniquely implicated molecular pathways. Pathway analysis suggested common activation of tumor necrosis factor α (TNFα), abnormal nervous system morphology, and neutrophil degranulation in all three regions. Activation of transforming growth factor-ß1 (TGF-ß1) was common to the hippocampus and thalamus, which share high CAA loads, while the thalamus, which uniquely exhibits thrombotic events, additionally displayed activation of thrombin and aggregation of blood cells. Thus, we present significant and new insight into the cerebral proteome changes found in distinct brain regions with differential CAA-related pathologies of rTg-DI rats and provide new information on potential pathogenic mechanisms associated with these regional disease processes.


Assuntos
Química Encefálica/genética , Angiopatia Amiloide Cerebral/genética , Proteoma/genética , Animais , Capilares/patologia , Degranulação Celular , Biologia Computacional , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Espectrometria de Massas , Neutrófilos/patologia , Patologia Molecular , Proteômica , Ratos , Ratos Transgênicos , Fator de Crescimento Transformador beta1/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Cogn Affect Behav Neurosci ; 21(6): 1207-1221, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34312815

RESUMO

The HIV transgenic (HIVtg) rat is a commonly used animal model of chronic HIV infection that exhibits a wide range of cognitive deficits. To date, relatively little work has been conducted on these rats' capacity for reversal learning, an assay of executive function and cognitive flexibility used in humans. The present study sought to determine the impact of HIV genotype on probabilistic reversal learning, effortful motivation, and spontaneous locomotion/exploration in rats. Male (n = 8) and female (n = 8) HIVtg rats and wildtype (WT) controls were utilized. Cognitive flexibility was assessed via the Probabilistic Reversal Learning Task (PRLT), which reinforced responses to two stimuli on differential probabilistic schedules that periodically reversed. Effortful motivation and locomotor/exploratory behavior were assessed via the Progressive Ratio Breakpoint Task (PRBT) and the Behavioral Pattern Monitor (BPM), respectively. Regardless of sex, HIVtg rats required fewer trials to ascertain initial PRLT reward schedules than WT rats, and completed the same number of reversals. Secondary behaviors suggested that HIVtg PRLT performance was facilitated by a speed-accuracy tradeoff strategy. No main or interactive effects of genotype were observed in the PRBT or BPM. Relative to WT controls, HIVtg rats exhibited superior probabilistic reinforcement learning. Reversal learning was unaffected by HIV genotype, as was effortful motivation and exploratory behavior. These findings contrast with previous characterizations of the HIVtg rat, thus indicating a nuanced cognitive profile that is dependent upon such task specifications as within- versus between-session assessment and probabilistic versus deterministic reward schedules.


Assuntos
Infecções por HIV , Reversão de Aprendizagem , Animais , Feminino , Infecções por HIV/genética , Masculino , Ratos , Ratos Transgênicos , Reforço Psicológico , Recompensa
18.
Clin Sci (Lond) ; 135(23): 2619-2623, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878506

RESUMO

It is well-established that Ang-(1-7) counteracts the effects of Ang II in the periphery, while stimulating vasopressin release and mimicking the activity of Ang II in the brain, through interactions with various receptors. The rapid metabolic inactivation of Ang-(1-7) has proven to be a limitation to therapeutic administration of the peptide. To circumvent this problem, Alves et al. (Clinical Science (2021) 135(18), https://doi.org/10.1042/CS20210599) developed a new transgenic rat model that overexpresses an Ang-(1-7)-producing fusion protein. In this commentary, we discuss potential concerns with this model while also highlighting advances that can ensue from this significant technical feat.


Assuntos
Encéfalo , Sistema Renina-Angiotensina , Animais , Ratos
19.
Transgenic Res ; 30(1): 91-104, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33481207

RESUMO

The goal of this study is to establish a Cre/loxP rat resource for conditional and physiologically predictive rat models of human diseases. The laboratory rat (R. norvegicus) is a central experimental animal in several fields of biomedical research, such as cardiovascular diseases, aging, infectious diseases, autoimmunity, cancer models, transplantation biology, inflammation, cancer risk assessment, industrial toxicology, pharmacology, behavioral and addiction studies, and neurobiology. Up till recently, the ability of creating genetically modified rats has been limited compared to that in the mouse mainly due to lack of genetic manipulation tools and technologies in the rat. Recent advances in nucleases, such as CRISPR/Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR associated protein 9), as well as TARGATT™ integrase system enables fast, efficient and site-specific introduction of exogenous genetic elements into the rat genome. Here, we report the generation of a collection of tissue-specific, inducible transgenic Cre rats as tool models using TARGATT™, CRISPR/Cas9 and random transgenic approach. More specifically, we generated Cre driver rat models that allow controlled gene expression or knockout (conditional models) both temporally and spatially through the Cre-ERT2/loxP system. A total of 10 Cre rat lines and one Cre reporter/test line were generated, including eight (8) Cre lines for neural specific and two (2) lines for cardiovascular specific Cre expression. All of these lines have been deposited with the Rat Resource and Research Center and provide a much-needed resource for the bio-medical community who employ rat models for their studies of human diseases.


Assuntos
Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Doenças Genéticas Inatas/genética , Integrases/genética , Envelhecimento/genética , Animais , Autoimunidade/genética , Doenças Cardiovasculares/genética , Doenças Transmissíveis/genética , Doenças Genéticas Inatas/terapia , Humanos , Inflamação/genética , Neoplasias/genética , Ratos , Transplante
20.
Amino Acids ; 53(11): 1695-1703, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34654958

RESUMO

Polyamines are important to the survival and activation of organs and tissues via a homeostatic cell-metabolic process, and the polyamine content in cytoplasm decreases with aging. Decreases in cellular polyamine have been known to augment mutagenesis and cell death. Thus, supplementary polyamine in food is important to the prevention of aging. Here we show the anti-aging effects of oral intake of polyamine using luciferase-transgenic rats. Healthy rats, 10-12 weeks old, were given foods containing 0.01% and 0.1% (w/w) of polyamine, as compared a control food without polyamine, for 4 weeks. Using a bioimaging system, the photon intensities seen in the whole bodies and livers of rats consuming 0.1% of polyamine in food were stronger than those in rats consuming 0.01% and 0% of polyamine. However, there were no differences between groups in other characteristics, such as liver damage and body weight. In conclusion, we found that polyamine intake can activate cells throughout the whole body, providing an anti-aging effect.


Assuntos
Envelhecimento/metabolismo , Poliaminas/metabolismo , Animais , Transporte Biológico , Gerociência , Humanos , Fígado/metabolismo , Masculino , Camundongos Transgênicos , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA