Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Biol Chem ; 300(6): 107302, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642892

RESUMO

Cellular zinc ions (Zn2+) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+]i), has been a subject of limited understanding regarding its molecular mechanism. Here, we used metal ion-affinity prediction, three-dimensional structural modeling, and mutagenesis, utilizing data from the Protein Data Bank and AlphaFold database, to elucidate the [Zn2+]i binding domain (IZD) structure composed by specific AAs residues in human (hTRPA1) and chicken TRPA1 (gTRPA1). External Zn2+ induced activation in hTRPA1, while not in gTRPA1. Moreover, external Zn2+ elevated [Zn2+]i specifically in hTRPA1. Notably, both hTRPA1 and gTRPA1 exhibited inherent sensitivity to [Zn2+]i, as evidenced by their activation upon internal Zn2+ application. The critical AAs within IZDs, specifically histidine at 983/984, lysine at 711/717, tyrosine at 714/720, and glutamate at 987/988 in IZD1, and H983/H984, tryptophan at 710/716, E854/E855, and glutamine at 979/980 in IZD2, were identified in hTRPA1/gTRPA1. Furthermore, mutations, such as the substitution of arginine at 919 (R919) to H919, abrogated the response to external Zn2+ in hTRPA1. Among single-nucleotide polymorphisms (SNPs) at Y714 and a triple SNP at R919 in hTRPA1, we revealed that the Zn2+ responses were attenuated in mutants carrying the Y714 and R919 substitution to asparagine and proline, respectively. Overall, this study unveils the intrinsic sensitivity of hTRPA1 and gTRPA1 to [Zn2+]i mediated through IZDs. Furthermore, our findings suggest that specific SNP mutations can alter the responsiveness of hTRPA1 to extracellular and intracellular Zn2+.


Assuntos
Galinhas , Canal de Cátion TRPA1 , Zinco , Zinco/metabolismo , Zinco/química , Humanos , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/química , Animais , Células HEK293 , Domínios Proteicos , Especificidade da Espécie
2.
J Biol Chem ; 300(8): 107574, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009345

RESUMO

Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as a homotetramer. We investigated whether three disease-associated mutations (F629S, C632R, or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wild-type (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15%) and R638C (∼30%). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.

3.
J Biol Chem ; 299(5): 104674, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028763

RESUMO

Autosomal dominant polycystic kidney disease is caused by mutations in PKD1 or PKD2 genes. The latter encodes polycystin-2 (PC2, also known as TRPP2), a member of the transient receptor potential ion channel family. Despite most pathogenic mutations in PKD2 being truncation variants, there are also many point mutations, which cause small changes in protein sequences but dramatic changes in the in vivo function of PC2. How these mutations affect PC2 ion channel function is largely unknown. In this study, we systematically tested the effects of 31 point mutations on the ion channel activity of a gain-of-function PC2 mutant, PC2_F604P, expressed in Xenopus oocytes. The results show that all mutations in the transmembrane domains and channel pore region, and most mutations in the extracellular tetragonal opening for polycystins domain, are critical for PC2_F604P channel function. In contrast, the other mutations in the tetragonal opening for polycystins domain and most mutations in the C-terminal tail cause mild or no effects on channel function as assessed in Xenopus oocytes. To understand the mechanism of these effects, we have discussed possible conformational consequences of these mutations based on the cryo-EM structures of PC2. The results help gain insight into the structure and function of the PC2 ion channel and the molecular mechanism of pathogenesis caused by these mutations.


Assuntos
Mutação com Ganho de Função , Mutação Puntual , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Humanos , Microscopia Crioeletrônica , Oócitos/metabolismo , Mutação Puntual/genética , Rim Policístico Autossômico Dominante/genética , Relação Estrutura-Atividade , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Xenopus laevis
4.
J Biol Chem ; 296: 100726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33933453

RESUMO

Transient receptor potential canonical type 5 (TRPC5) ion channels are expressed in the brain and kidney and have been identified as promising therapeutic targets whose selective inhibition can protect against diseases driven by a leaky kidney filter, such as focal segmental glomerular sclerosis. TRPC5 channels are activated not only by elevated levels of extracellular Ca2+or lanthanide ions but also by G protein (Gq/11) stimulation. Phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipase C enzymes leads to PKC-mediated phosphorylation of TRPC5 channels and their subsequent desensitization. However, the roles of PIP2 in activation and maintenance of TRPC5 channel activity via its hydrolysis product diacyl glycerol (DAG), as well as the mechanism of desensitization of TRPC5 activity by DAG-stimulated PKC activity, remain unclear. Here, we designed experiments to distinguish between the processes underlying channel activation and inhibition. Employing whole-cell patch-clamp, we used an optogenetic tool to dephosphorylate PIP2 and assess channel-PIP2 interactions influenced by activators, such as DAG, or inhibitors, such as PKC phosphorylation. Using total internal reflection microscopy, we assessed channel cell surface density. We show that PIP2 controls both the PKC-mediated inhibition and the DAG- and lanthanide-mediated activation of TRPC5 currents via control of gating rather than channel cell surface density. These mechanistic insights promise to aid in the development of more selective and precise inhibitors to block TRPC5 channel activity and illuminate new opportunities for targeted therapies for a group of chronic kidney diseases for which there is currently a great unmet need.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Cátion TRPC/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica
5.
J Biol Chem ; 297(4): 101125, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461094

RESUMO

Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. In silico docking scanning of TRPC6 identified three extracellular sites that can bind small molecules, of which only mutations on residues of PH and S6 helix significantly reduced the apparent affinity of M085 and GSK1702934A and attenuated the maximal response of TRPC6 to these two chemicals by altering channel gating of TRPC6. Combing metadynamics, molecular dynamics simulations, and mutagenesis, we revealed that W679, E671, E672, and K675 in the PH and N701 and Y704 in the S6 helix constitute an orthosteric site for the recognition of these two agonists. The importance of this site was further confirmed by covalent modification of amino acid residing at the interface of the PH and S6 helix. Given that three structurally distinct agonists M085, GSK1702934A, and AM-0883, act at this site, as well as the occupancy of lipid molecules at this position found in other TRP subfamilies, it is suggested that the cavity formed by the PH and S6 has an important role in the regulation of TRP channel function by extracellular signals.


Assuntos
Sinalização do Cálcio , Ativação do Canal Iônico/efeitos dos fármacos , Simulação de Dinâmica Molecular , Canal de Cátion TRPC6/química , Canal de Cátion TRPC6/metabolismo , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Canal de Cátion TRPC6/genética
6.
J Biol Chem ; 295(24): 8174-8185, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32345612

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) channel is activated by heat and by capsaicin, the pungent compound in chili peppers. Calcium influx through TRPV1 has been shown to activate a calcium-sensitive phospholipase C (PLC) enzyme and to lead to a robust decrease in phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] levels, which is a major contributor to channel desensitization. Diacylglycerol (DAG), the product of the PLC-catalyzed PI(4,5)P2 hydrolysis, activates protein kinase C (PKC). PKC is known to potentiate TRPV1 activity during activation of G protein-coupled receptors, but it is not known whether DAG modulates TRPV1 during desensitization. We found here that inhibition of diacylglycerol kinase (DAGK) enzymes reduces desensitization of native TRPV1 in dorsal root ganglion neurons as well as of recombinant TRPV1 expressed in HEK293 cells. The effect of DAGK inhibition was eliminated by mutating two PKC-targeted phosphorylation sites, Ser-502 and Ser-800, indicating involvement of PKC. TRPV1 activation induced only a small and transient increase in DAG levels, unlike the robust and more sustained increase induced by muscarinic receptor activation. DAGK inhibition substantially increased the DAG signal evoked by TRPV1 activation but not that evoked by M1 muscarinic receptor activation. Our results show that Ca2+ influx through TRPV1 activates PLC and DAGK enzymes and that the latter limits formation of DAG and negatively regulates TRPV1 channel activity. Our findings uncover a role of DAGK in ion channel regulation.


Assuntos
Diacilglicerol Quinase/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Capsaicina/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoplasma/metabolismo , Diacilglicerol Quinase/antagonistas & inibidores , Diglicerídeos/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ritanserina/farmacologia
7.
J Biol Chem ; 295(19): 6330-6343, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32198181

RESUMO

The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene-Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Desoxiglucose/análogos & derivados , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Aldeído Pirúvico/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Animais , Bradicinina/farmacologia , Desoxiglucose/farmacologia , Interações Medicamentosas , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Prostaglandinas/farmacologia , Temperatura
8.
J Biol Chem ; 295(50): 17337-17348, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33060203

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvß1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvß1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvß1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvß1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvß1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.


Assuntos
Gânglios Espinais/metabolismo , Neurônios/metabolismo , Canais de Potássio Shab/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Células HEK293 , Humanos , Camundongos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Canais de Potássio Shab/genética , Canais de Cátion TRPV/genética
9.
J Biol Chem ; 295(29): 9986-9997, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32493776

RESUMO

G-protein-coupled receptors (GPCRs) are a ubiquitously expressed family of receptor proteins that regulate many physiological functions and other proteins. They act through two dissociable signaling pathways: the exchange of GDP to GTP by linked G-proteins and the recruitment of ß-arrestins. GPCRs modulate several members of the transient receptor potential (TRP) channel family of nonselective cation channels. How TRP channels reciprocally regulate GPCR signaling is less well-explored. Here, using an array of biochemical approaches, including immunoprecipitation and fluorescence, calcium imaging, phosphate radiolabeling, and a ß-arrestin-dependent luciferase assay, we characterize a GPCR-TRP channel pair, angiotensin II receptor type 1 (AT1R), and transient receptor potential vanilloid 4 (TRPV4), in primary murine choroid plexus epithelial cells and immortalized cell lines. We found that AT1R and TRPV4 are binding partners and that activation of AT1R by angiotensin II (ANGII) elicits ß-arrestin-dependent inhibition and internalization of TRPV4. Activating TRPV4 with endogenous and synthetic agonists inhibited angiotensin II-mediated G-protein-associated second messenger accumulation, AT1R receptor phosphorylation, and ß-arrestin recruitment. We also noted that TRPV4 inhibits AT1R phosphorylation by activating the calcium-activated phosphatase calcineurin in a Ca2+/calmodulin-dependent manner, preventing ß-arrestin recruitment and receptor internalization. These findings suggest that when TRP channels and GPCRs are co-expressed in the same tissues, many of these channels can inhibit GPCR desensitization.


Assuntos
Receptores de Angiotensina/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Receptores de Angiotensina/genética , Canais de Cátion TRPV/genética , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
10.
J Biol Chem ; 295(28): 9641-9649, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32461255

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) channel is a heat-activated cation channel that plays a crucial role in ambient temperature detection and thermal homeostasis. Although several structural features of TRPV1 have been shown to be involved in heat-induced activation of the gating process, the physiological significance of only a few of these key elements has been evaluated in an evolutionary context. Here, using transient expression in HEK293 cells, electrophysiological recordings, and molecular modeling, we show that the pore turret contains both structural and functional determinants that set the heat activation thresholds of distinct TRPV1 orthologs in mammals whose body temperatures fluctuate widely. We found that TRPV1 from the bat Carollia brevicauda exhibits a lower threshold temperature of channel activation than does its human ortholog and three bat-specific amino acid substitutions located in the pore turret are sufficient to determine this threshold temperature. Furthermore, the structure of the TRPV1 pore turret appears to be of physiological and evolutionary significance for differentiating the heat-activated threshold among species-specific TRPV1 orthologs. These findings support a role for the TRPV1 pore turret in tuning the heat-activated threshold, and they suggest that its evolution was driven by adaption to specific physiological traits among mammals exposed to variable temperatures.


Assuntos
Quirópteros/metabolismo , Temperatura Alta , Canais de Cátion TRPV/metabolismo , Animais , Quirópteros/genética , Células HEK293 , Humanos , Especificidade da Espécie , Canais de Cátion TRPV/genética
11.
J Biol Chem ; 294(8): 2935-2946, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30587572

RESUMO

Estrogen hormones play an important role in controlling glucose homeostasis and pancreatic ß-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic ß-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic ß-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases.


Assuntos
Estrogênios de Catecol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos
12.
J Biol Chem ; 294(1): 28-37, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30413532

RESUMO

Ischemia-related diseases are a leading cause of death worldwide, and promoting therapeutic angiogenesis is key for effective recovery from hypoxia-ischemia. Given the limited success of angiogenic factors, such as vascular endothelial growth factor, in clinical trials, it is important to find more promising angiogenic targets. Here, using both cell- and tissue-based assays and a mouse model of injury-induced ischemia, we investigated the involvement of the transient receptor potential canonical 5 (TRPC5) ion channel in angiogenesis and the effects of a TRPC5 activator, the Food and Drug Administration-approved drug riluzole, on recovery from ischemic injury. We demonstrate that TRPC5 is involved in endothelial cell sprouting, angiogenesis, and blood perfusion in an oxygen-induced retinopathy model and a hind limb ischemia model. We found a potential regulatory link between nuclear factor of activated T cell isoform c3 and angiopoietin-1 that could provide the mechanistic basis for the angiogenic function of TRPC5. Importantly, treatment with riluzole, which can activate TRPC5 in endothelial cells, improved recovery from ischemia in mice. Our study reveals TRPC5 as a potential angiogenic target and suggests riluzole as a promising drug for managing ischemic diseases.


Assuntos
Células Endoteliais/metabolismo , Isquemia/metabolismo , Neovascularização Patológica/metabolismo , Doenças Retinianas/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Células HEK293 , Humanos , Isquemia/genética , Isquemia/patologia , Isquemia/fisiopatologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Riluzol/farmacologia , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética
13.
J Biol Chem ; 294(49): 18873-18880, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653697

RESUMO

The anthelmintic drug praziquantel (PZQ) is used to treat schistosomiasis, a neglected tropical disease that affects over 200 million people worldwide. PZQ causes Ca2+ influx and spastic paralysis of adult worms and rapid vacuolization of the worm surface. However, the mechanism of action of PZQ remains unknown even after 40 years of clinical use. Here, we demonstrate that PZQ activates a schistosome transient receptor potential (TRP) channel, christened SmTRPMPZQ, present in parasitic schistosomes and other PZQ-sensitive parasites. Several properties of SmTRPMPZQ were consistent with known effects of PZQ on schistosomes, including (i) nanomolar sensitivity to PZQ; (ii) stereoselectivity toward (R)-PZQ; (iii) mediation of sustained Ca2+ signals in response to PZQ; and (iv) a pharmacological profile that mirrors the well-known effects of PZQ on muscle contraction and tegumental disruption. We anticipate that these findings will spur development of novel therapeutic interventions to manage schistosome infections and broader interest in PZQ, which is finally unmasked as a potent flatworm TRP channel activator.


Assuntos
Anti-Helmínticos/farmacologia , Praziquantel/farmacologia , Schistosoma/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Eletrofisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Schistosoma/efeitos dos fármacos
14.
J Biol Chem ; 294(3): 816-826, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30482841

RESUMO

Regulated mucin secretion is essential for the formation of the mucus layer that protects the underlying epithelial cells from foreign particles. Alterations in the quantity or quality of secreted mucins are therefore detrimental to airway and colon physiology. Based on various biochemical assays in several human cell lines, we report here that Na+/Ca2+ exchanger 2 (NCX2) works in conjunction with transient receptor potential cation channel subfamily M member 4 (TRPM4), and perhaps TRPM5, Na+ channels to control Ca2+-mediated secretion of both mucin 2 (MUC2) and MUC5AC from HT29-18N2 colonic cancer cells. Differentiated normal bronchial epithelial (NHBE) cells and tracheal cells from patients with cystic fibrosis (CFT1-LC3) expressed only TRPM4 and all three isoforms of NCXs. Blocking the activity of TRPM4 or NCX proteins abrogated MUC5AC secretion from NHBE and CFT1-LC3 cells. Altogether, our findings reveal that NCX and TRPM4/TRPM5 are both required for mucin secretion. We therefore propose that these two proteins could be potential pharmacological targets to control mucus-related pathologies such as cystic fibrosis.


Assuntos
Cálcio/metabolismo , Células Caliciformes/metabolismo , Mucina-5AC/metabolismo , Mucina-2/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Canais de Cátion TRPM/metabolismo , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Células Caliciformes/patologia , Humanos , Mucina-5AC/genética , Mucina-2/genética , Trocador de Sódio e Cálcio/genética , Canais de Cátion TRPM/genética
15.
J Biol Chem ; 294(34): 12655-12669, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31266804

RESUMO

Transient receptor potential cation channel subfamily C member 6 (TRPC6) is a widely expressed ion channel. Gain-of-function mutations in the human TRPC6 channel cause autosomal-dominant focal segmental glomerulosclerosis, but the molecular components involved in disease development remain unclear. Here, we found that overexpression of gain-of-function TRPC6 channel variants is cytotoxic in cultured cells. Exploiting this phenotype in a genome-wide CRISPR/Cas screen for genes whose inactivation rescues cells from TRPC6-associated cytotoxicity, we identified several proteins essential for TRPC6 protein expression, including the endoplasmic reticulum (ER) membrane protein complex transmembrane insertase. We also identified transmembrane protein 208 (TMEM208), a putative component of a signal recognition particle-independent (SND) ER protein-targeting pathway, as being necessary for expression of TRPC6 and several other ion channels and transporters. TRPC6 expression was also diminished by loss of the previously uncharacterized WD repeat domain 83 opposite strand (WDR83OS), which interacted with both TRPC6 and TMEM208. Additionally enriched among the screen hits were genes involved in N-linked protein glycosylation. Deletion of the mannosyl (α-1,3-)-glycoprotein ß-1,2-N-acetylglucosaminyltransferase (MGAT1), necessary for the generation of complex N-linked glycans, abrogated TRPC6 gain-of-function variant-mediated Ca2+ influx and extracellular signal-regulated kinase activation in HEK cells, but failed to diminish cytotoxicity in cultured podocytes. However, mutating the two TRPC6 N-glycosylation sites abrogated the cytotoxicity of mutant TRPC6 and reduced its surface expression. These results expand the targets of TMEM208-mediated ER translocation to include multipass transmembrane proteins and suggest that TRPC6 N-glycosylation plays multiple roles in modulating channel trafficking and activity.


Assuntos
Membrana Celular/metabolismo , Canal de Cátion TRPC6/metabolismo , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Mutação com Ganho de Função , Glicosilação/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/metabolismo
16.
J Biol Chem ; 294(32): 12054-12065, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31213528

RESUMO

Charcot-Marie-Tooth (CMT) disease is a peripheral neuropathy associated with gene duplication and point mutations in the peripheral myelin protein 22 (PMP22) gene. However, the role of PMP22 in Schwann cell physiology and the mechanisms by which PMP22 mutations cause CMT are not well-understood. On the basis of homology between PMP22 and proteins associated with modulation of ion channels, we hypothesized that PMP22 alters ion channel activity. Using whole-cell electrophysiology, we show here that heterologous PMP22 expression increases the amplitude of currents similar to those ascribed to store-operated calcium (SOC) channels, particularly those involving transient receptor canonical channel 1 (TrpC1). These channels help replenish Ca2+ in the endoplasmic reticulum (ER) following stimulus-induced depletion. Currents with similar properties were recorded in WT but not pmp22-/- mouse Schwann cells. Heterologous expression of the CMT-associated PMP22_L16P variant, which fails to reach the plasma membrane and localizes to the ER, led to larger currents than WT PMP22. Similarly, Schwann cells isolated from Trembler J (TrJ; PMP22_L16P) mice had larger currents than WT littermates. Calcium imaging in live nerves and cultured Schwann cells revealed elevated intracellular Ca2+ in TrJ mice compared with WT. Moreover, we found that PMP22 co-immunoprecipitated with stromal interaction molecule 1 (STIM1), the Ca2+ sensor SOC channel subunit in the ER. These results suggest that in the ER, PMP22 interacts with STIM1 and increases Ca2+ influx through SOC channels. Excess or mutant PMP22 in the ER may elevate intracellular Ca2+ levels, which could contribute to CMT pathology.


Assuntos
Canais de Cálcio/metabolismo , Proteínas da Mielina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Retículo Endoplasmático/metabolismo , Potenciais Evocados/efeitos dos fármacos , Gadolínio/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas da Mielina/deficiência , Proteínas da Mielina/genética , Células de Schwann/citologia , Células de Schwann/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPC/metabolismo
17.
J Biol Chem ; 294(48): 18421-18434, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31619514

RESUMO

Many retinal diseases are associated with pathological cell swelling, but the underlying etiology remains to be established. A key component of the volume-sensitive machinery, the transient receptor potential vanilloid 4 (TRPV4) ion channel, may represent a sensor and transducer of cell swelling, but the molecular link between the swelling and TRPV4 activation is unresolved. Here, our results from experiments using electrophysiology, cell volumetric measurements, and fluorescence imaging conducted in murine retinal cells and Xenopus oocytes indicated that cell swelling in the physiological range activated TRPV4 in Müller glia and Xenopus oocytes, but required phospholipase A2 (PLA2) activity exclusively in Müller cells. Volume-dependent TRPV4 gating was independent of cytoskeletal rearrangements and phosphorylation. Our findings also revealed that TRPV4-mediated transduction of volume changes is dependent by its N terminus, more specifically by its distal-most part. We conclude that the volume sensitivity and function of TRPV4 in situ depend critically on its functional and cell type-specific interactions.


Assuntos
Células Ependimogliais/metabolismo , Ativação do Canal Iônico/fisiologia , Neuroglia/metabolismo , Oócitos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Tamanho Celular , Células Ependimogliais/citologia , Feminino , Ativação do Canal Iônico/genética , Camundongos , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Oócitos/citologia , Técnicas de Patch-Clamp , Fosfolipases A2/metabolismo , Fosforilação , Ratos , Canais de Cátion TRPV/genética , Xenopus laevis
18.
J Biol Chem ; 293(10): 3637-3650, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29343514

RESUMO

A lack of effective treatment is one of the main factors contributing to gastric cancer-related death. Discovering effective targets and understanding their underlying anti-cancer mechanism are key to achieving the best response to treatment and to limiting side effects. Although recent studies have shown that the cation channel transient receptor potential melastatin-2 (TRPM2) is crucial for cancer cell survival, the exact mechanism remains unclear, limiting its therapeutic potential. Here, using molecular and functional assays, we investigated the role of TRPM2 in survival of gastric cancer cells. Our results indicated that TRPM2 knockdown in AGS and MKN-45 cells decreases cell proliferation and enhances apoptosis. We also observed that the TRPM2 knockdown impairs mitochondrial metabolism, indicated by a decrease in basal and maximal mitochondrial oxygen consumption rates and ATP production. These mitochondrial defects coincided with a decrease in autophagy and mitophagy, indicated by reduced levels of autophagy- and mitophagy-associated proteins (i.e. ATGs, LC3A/B II, and BNIP3). Moreover, we found that TRPM2 modulates autophagy through a c-Jun N-terminal kinase (JNK)-dependent and mechanistic target of rapamycin-independent pathway. We conclude that in the absence of TRPM2, down-regulation of the JNK-signaling pathway impairs autophagy, ultimately causing the accumulation of damaged mitochondria and death of gastric cancer cells. Of note, by inhibiting cell proliferation and promoting apoptosis, the TRPM2 down-regulation enhanced the efficacy of paclitaxel and doxorubicin in gastric cancer cells. Collectively, we provide compelling evidence that TRPM2 inhibition may benefit therapeutic approaches for managing gastric cancer.


Assuntos
Adenocarcinoma/metabolismo , Apoptose , Autofagia , Mitofagia , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/metabolismo , Canais de Cátion TRPM/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Registros Eletrônicos de Saúde , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosforilação Oxidativa/efeitos dos fármacos , Paclitaxel/farmacologia , Interferência de RNA , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética
19.
J Biol Chem ; 293(47): 18151-18167, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30305398

RESUMO

Transient receptor potential cation channel subfamily M member 7 (TRPM7) is an ion channel/protein kinase belonging to the TRP melastatin and eEF2 kinase families. Under physiological conditions, most native TRPM7 channels are inhibited by cytoplasmic Mg2+, protons, and polyamines. Currents through these channels (ITRPM7) are robustly potentiated when the cell interior is exchanged with low Mg2+-containing buffers. ITRPM7 is also potentiated by phosphatidyl inositol bisphosphate (PI(4,5)P2) and suppressed by its hydrolysis. Here we characterized internal Mg2+- and pH-mediated inhibition of TRPM7 channels in HEK293 cells overexpressing WT voltage-sensing phospholipid phosphatase (VSP) or its catalytically inactive variant VSP-C363S. VSP-mediated depletion of membrane phosphoinositides significantly increased channel sensitivity to Mg2+ and pH. Proton concentrations that were too low to inhibit ITRPM7 when the VSP-C363S variant was expressed (pH 8.2) became inhibitory in WT VSP-expressing cells. At pH 6.5, protons inhibited ITRPM7 both in WT and VSP C363S-expressing cells but with a faster time course in the WT VSP-expressing cells. Inhibition by 150 µm Mg2+ was also significantly faster in the WT VSP-expressing cells. Cellular PI(4,5)P2 depletion increased the sensitivity of TRPM7 channels to the inhibitor 2-aminoethyl diphenyl borinate, which acidifies the cytosol. Single substitutions at Ser-1107 of TRPM7, reducing its sensitivity to Mg2+, also decreased its inhibition by spermine and acidic pH. Furthermore, these channel variants were markedly less sensitive to VSP-mediated PI(4,5)P2 depletion than the WT. We conclude that the internal Mg2+-, polyamine-, and pH-mediated inhibition of TRPM7 channels is not direct but, rather, reflects electrostatic screening and resultant disruption of PI(4,5)P2-channel interactions.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Magnésio/metabolismo , Fosfatidilinositóis/metabolismo , Espermina/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Transporte Biológico , Membrana Celular/genética , Concentração de Íons de Hidrogênio , Camundongos , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Poliaminas/metabolismo , Prótons , Canais de Cátion TRPM/genética
20.
J Biol Chem ; 293(30): 11736-11745, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29884771

RESUMO

Transient receptor potential mucolipin subfamily 1 (TRPML1) is a nonselective cation channel mainly located in late endosomes and lysosomes. Mutations of the gene encoding human TRPML1 can cause severe lysosomal diseases. The activity of TRPML1 is regulated by both Ca2+ and H+, which are important for its critical physiological functions in membrane trafficking, exocytosis, autophagy, and intracellular signal transduction. However, the molecular mechanism of its dual regulation by Ca2+ and H+ remains elusive. Here, using a mutant screening method in combination with a whole-cell patch clamp technique, we identified a key TRPML1 residue, Asp-472, responsible for both fast calcium-dependent inactivation (FCDI) and slow calcium-dependent inactivation (SCDI) as well as H+ regulation. We also found that, in acidic pH, H+ can significantly delay FCDI and abolish SCDI and thereby presumably facilitate the ion conductance of the human TRPML1 channel. In summary, we have identified a key residue critical for Ca2+-induced inhibition of TRPML1 channel currents and uncovered pH-dependent regulation of this channel, providing vital information regarding the detailed mechanism of action of human TRPML1.


Assuntos
Ácido Aspártico/metabolismo , Cálcio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Ácido Aspártico/análise , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Técnicas de Patch-Clamp , Canais de Potencial de Receptor Transitório/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA