Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(15): e2306967, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992250

RESUMO

The traditional recycling methods of the spent lithium ion batteries (LIBs) involve the intricate and cumbersome steps. This work proposes a facile method of acid leaching followed by the sulfurization treatment to achieve the high Li leaching efficiency, and obtain high-performance multi-function electrocatalysts for oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR) from the spent LIB ternary cathodes. By this method, the Li leaching efficiency from the spent LIB ternary cathode can reach 98.3%, and the transition metal sulfide heterostructures (LNMCO-H-450S) consisting MnS, NiS2, and NiCo2S4 phases can be obtained. LNMCO-H-450S shows the superior bifunctional oxygen catalytic activities with ORR half-wave potential of 0.763 V and OER potential at 10 mA cm-2 of 1.561 V, surpassing most of the state-of-the-art electrocatalysts. LNMCO-H-450S also demonstrates the superior MOR catalytic activity with the potential at 100 mA cm-2 being 1.37 V. Using LNMCO-H-450S as the oxygen catalyst, this work can construct the aqueous and solid-state zinc-air batteries with high power density of 309 and 257 mW cm-2, respectively. This work provides a promising strategy for the efficient recovery of Li, and reutilization of Ni, Co, and Mn from the spent LIB ternary cathodes.

2.
Chimia (Aarau) ; 78(1-2): 7-12, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38430058

RESUMO

Heterogeneous catalysis is essential to most industrial chemical processes. To achieve a better sustainability of these processes we need highly efficient and highly selective catalysts that are based on earth-abundant materials rather than the more conventional noble metals. Here, we discuss the potential of inorganic materials as catalysts for chemical transformations focusing in particular on the promising transition metal phosphides and sulfides. We describe our recent and current efforts to understand the interfacial chemistry of these materials that governs catalysis, and to tune catalytic reactivity by controlled chemical modification of the material surfaces and by use of interfacial electric fields.

3.
Small ; 19(42): e2302737, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37345587

RESUMO

How to collaboratively reduce Cr(VI) and break Cr(III) complexes is a technical challenge to solve chromium-containing wastewater (CCW) pollution. Solar photovoltaic (SPV) technology based on semiconductor materials is a potential strategy to solve this issue. Sb2 S3 is a typical semiconductor material with total visible-light harvesting capacity, but its large-sized structure highly aggravates disordered photoexciton migration, accelerating the recombination kinetics and resulting low-efficient photon utilization. Herein, the uniform mesoporous CdS shell is in situ formed on the surface of Sb2 S3 nanorods (NRs) to construct the core-shell Sb2 S3 @CdS heterojunction with high BET surface area and excellent near-infrared light harvesting capacity via a surface cationic displacement strategy, and density functional theory thermodynamically explains the breaking of SbS bonds and formation of CdS bonds according to the bond energy calculation. The SbSCd bonding interaction and van der Waals force significantly enhance the stability and synergy of Sb2 S3 /CdS heterointerface throughout the entire surface of Sb2 S3 NRs, promoting the Sb2 S3 -to-CdS electron transfer due to the formation of built-in electric field. Therefore, the optimized Sb2 S3 @CdS catalyst achieves highly enhanced simulated sunlight-driven Cr(VI) reduction (0.154 min-1 ) and decomplexation of complexed Cr(III) in weakly acidic condition, resulting effective CCW treatment under co-action of photoexcited electrons and active radicals. This study provides a high-performance heterostructured catalyst for effective CCW treatment by SPV technology.

4.
Small ; 19(34): e2301954, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086143

RESUMO

Magnesium-ion batteries (MIBs) are emerging as potential next-generation energy storage systems due to high security and high theoretical energy density. Nevertheless, the development of MIBs is limited by the lack of cathode materials with high specific capacity and cyclic stability. Currently, transition metal sulfides are considered as a promising class of cathode materials for advanced MIBs. Herein, a template-based strategy is proposed to successfully fabricate metal-organic framework-derived in-situ porous carbon nanorod-encapsulated CuS quantum dots (CuS-QD@C nanorods) via a two-step method of sulfurization and cation exchange. CuS quantum dots have abundant electrochemically active sites, which facilitate the contact between the electrode and the electrolyte. In addition, the tight combination of CuS quantum dots and porous carbon nanorods increases the electronic conductivity while accelerating the transport speed of ions and electrons. With these architectural and compositional advantages, when used as a cathode material for MIBs, the CuS-QD@C nanorods exhibit remarkable performance in magnesium storage, including a high reversible capacity of 323.7 mAh g-1 at 100 mA g-1 after 100 cycles, excellent long-term cycling stability (98.5 mAh g-1 after 1000 cycles at 1.0 A g-1 ), and satisfying rate performance (111.8 mA g-1 at 1.0 A g-1 ).

5.
Chemistry ; 29(31): e202300206, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36938659

RESUMO

In this paper, a waxberry-like MnS/Ni3 S4 composite catalyst was designed and synthesized. In this coating structure, MnS is located inside and Ni3 S4 is wrapped on the surface to form a spherical structure. This structure makes the material show excellent stability in the electrocatalytic process. The diffusion staggered region structure formed at the two-phase interface greatly enhances the synergistic interaction between MnS and Ni3 S4 . At the same time, the defects and vacancies formed by the diffusion mechanism at the interface of the two phases increase the active site and improve the interfacial electron transfer kinetics. Therefore, MnS/Ni3 S4 composites showed good catalytic performance for ORR/OER. At 10 mA cm-2 , the overpotential of it is only 320 mV, and the half-wave potential can reach 0.81 V. The catalyst also exhibited extraordinary cycle stability and small voltage gap when used as cathode of Zn-air batteries. When the current density is 3 mA cm-2 , the cyclic discharge can be stable for 400 h and the voltage difference between the front and back does not increase more than. When the current density increases to 5 mA cm-2 , the cyclic charge and discharge can be stable for more than 300 h.

6.
Chemistry ; 29(64): e202302244, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37604794

RESUMO

With the rapid improvement of compact smart devices, fabricating anode materials with high volumetric capacity has gained substantial interest for future sodium-ion batteries (SIBs) applications. Herein, a novel bimetal sulfide CuCo5 S8 material is proposed with enhanced volumetric capacity due to the intrinsic metallic electronic conductivity of the material and multi-electron transfer during electrochemical procedures. Due to the intrinsic metallic behavior, the conducting additive (CA) could be removed from the electrode fabrication without scarifying the high rate capability. The CA-free CuCo5 S8 electrode can achieve a high volumetric capacity of 1436.4 mA h cm-3 at a current density of 0.2 A g-1 and 100 % capacity retention over 2000 cycles in SIBs, outperforming most metal chalcogenides, owing to the enhanced electrode density. Reversible conversion reactions are revealed by combined measurements for sodium systems. The proposed new strategy offers a viable approach for developing innovative anode materials with high-volumetric capacity.

7.
Angew Chem Int Ed Engl ; 62(18): e202301802, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36867435

RESUMO

Oriented synthesis of transition metal sulfides (TMSs) with controlled compositions and crystal structures has long been promising for electronic devices and energy applications. Liquid-phase cation exchange (LCE) is a well-studied route by varying the compositions. However, achieving crystal structure selectivity is still a great challenge. Here, we demonstrate gas-phase cation exchange (GCE), which can induce a specific topological transformation (TT), for the synthesis of versatile TMSs with identified cubic or hexagonal crystal structures. The parallel six-sided subunit (PSS), a new descriptor, is defined to describe the substitution of cations and the transition of the anion sublattice. Under this principle, the band gap of targeted TMSs can be tailored. Using the photocatalytic hydrogen evolution as an example, the optimal hydrogen evolution rate of a zinc-cadmium sulfide (ZCS4) is determined to be 11.59 mmol h-1 g-1 , showing a 36.2-fold improvement over CdS.

8.
Small ; 18(48): e2205163, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36284483

RESUMO

The low utilization rate of active materials, shuttle effect of lithium polysulfides (LiPSs), and slow reaction kinetics lead to the extremely low efficiency and poor high current cycle stability of lithium sulfur batteries (Li-S batteries). In this paper, a self-supporting multicomponent hierarchical network aerogel is proposed as the modified cathode (S/GO@MX@VS4 ). It consists of graphene (GO) and MXene nanosheets (MX) loaded with VS4 nanoparticles. The experimental results and first-principles calculations show that the GO@MX@VS4 aerogel has strong adsorption and reversible conversion effects on LiPSs. It can not only inhibit the shuttle effect and improve the utilization rate of active substances by keeping the chain crystal structure of VS4 , but also promote the reversibility and kinetics of the reaction by accelerating the liquid-solid transformation in the reduction process and the decomposition of insoluble Li2 S in the oxidation process. The GO@MX@VS4 aerogel modified cathode with a multicomponent synergy exhibits the capacity ratios (Q1 /Q2 ) at different discharge stages is close to the theoretical value (1:2.8), and the capacity decay per cycle is 0.019% in 1200 cycles at 5C. Also, a high areal capacity of 6.90 mAh cm-2 is provided even at high sulfur loading (7.39 mg cm-2 ) and low electrolyte/sulfur ratio (E/S, 8.0 µL mg-1 ).

9.
Small ; 18(42): e2203383, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36122184

RESUMO

It is desirable for secondary batteries to have high capacities and long lifetimes. This paper reports the use of Na2 FeS2 with a specific structure consisting of edge-shared and chained FeS4 as the host structure and as a high-capacity active electrode material. An all-solid-state sodium cell that uses Na2 FeS2 exhibits a high capacity of 320 mAh g-1 , which is close to the theoretical two-electron reaction capacity of 323 mAh g-1 , and operates reversibly for 300 cycles. The excellent electrochemical properties of all-solid-state sodium cells are derived from the anion-cation redox and rigid host structure during charging/discharging. In addition to the initial one-electron reaction of Nax FeS2 (1 ≤ x ≤ 2) activated Fe2+ /Fe3+ redox as the main redox center, the reversible sulfur redox further contributes to the high capacity. Although the additional sulfur redox affects the irreversible crystallographic changes, stable and reversible redox reactions are observed without capacity fading, owing to the local maintenance of the chained FeS4 in the host structure. Sodium iron sulfide Na2 FeS2 , which combines low-cost elements, is one of the candidates that can meet the high requirements of practical applications.

10.
Chemistry ; 28(67): e202202062, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35959702

RESUMO

Due to the energy crisis by the excessive consumption of fossil fuels, Zinc-air batteries (ZABs) with high theoretical energy density have attracted people's attention. The overall performance of ZABs is largely determined by the air cathode catalyst. Therefore, it is necessary to develop high-efficiency and low-cost bifunctional catalysts to replace noble metal catalysts to promote the development of ZABs. Among a variety of cathode catalysts, TMS has become a research hotspot in recent years because of its better electrical conductivity than metal phosphides and metal oxides. In this work, we focus on the means of improving the electrocatalytic performance of transition-metal sulfides (TMS) providing ideas for us to rationally design high-performance catalysts. Furthermore, the performance improvement law between catalyst performance and ZABs is also discussed in this work. Finally, some challenges and opportunities faced in the research of TMS electrocatalysis are briefly proposed, and strategies for improving the performance of ZABs are prospected.

11.
Anal Biochem ; 659: 114950, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243134

RESUMO

Herein, a signal amplified electrochemical immunosensor for the sensitive detection of cytokeratin 19 fragments (CYFRA 21-1) in human serum was discussed. The CoNi-RGO was used as a substrate for the sensor with excellent specific surface area and strong electrical conductivity, which enables more efficient attachment of antibodies. The introduction of the bimetallic sulfide NiCo2S4 composite ZIF material provides strong catalytic performance for the immunosensor. It is worth noting that, in addition to these satisfactory advantages, these two materials also show amazing signal amplification capacity. When the immunosensor works, the increase in electrical impedance decreases the electron transfer rate, making the electrochemical signal change obvious. The signal enhancement of immunosensors was emphasized by the marker during construction, and the experimental results were satisfactory. The proposed signal enhanced immunosensor had a linear relationship in the range of 0.001-10 ng/mL for CYFRA 21-1, and the minimum detection limit was 0.33 pg/mL for △I = 95.22 + 23.27 lg c. This demonstrates that the electrochemical immunosensor we constructed is successful and has a great developing potential.


Assuntos
Técnicas Biossensoriais , Caramujo Conus , Grafite , Nanopartículas Metálicas , Animais , Humanos , Técnicas Biossensoriais/métodos , Cobalto/química , Técnicas Eletroquímicas/métodos , Ouro , Imunoensaio/métodos , Queratina-19 , Limite de Detecção
12.
Nanotechnology ; 33(24)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-34891144

RESUMO

A facile two-step hydrothermal approach with post-sulfurization treatment was put forward to construct the mixed transition metal sulfide (NiCoZnS) with a high electrochemical performance. The different morphologies of NiCoZnS materials were successfully fabricated by adjusted the Ni/Co molar ratio of the NiCoZn(OH)F precursor. Moreover, thein situphase transformation from the NiCoZn(OH)F phase to Zn0.76Co0.24S and NiCo2S4phases and lattice defects via the S2-ion-exchange were determined by x-ray diffractometer, transmission electron microscopy and x-ray photoelectron spectroscopy techniques, which improved electric conductivity and interfacial active sites of the NiCoZnS, and so promoted the reaction kinetics. Significantly, the urchin-like NiCoZnS1/1prepared at the Ni/Co molar ratio of 1.0 exhibited promising electrochemical performances with high capacitance and excellent cycling stability. Furthermore, the asymmetric device (NiCoZnS//AC) using NiCoZnS1/1as the positive electrode had excellent supercapacitor performances with an energy density of 57.8 Wh·kg-1at a power density of 750 W·kg-1as well as a long cycle life (79.2% capacity retention after 10 000 cycles), indicating the potential application in high-performance supercapacitors.

13.
Nanotechnology ; 33(44)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878590

RESUMO

Developing highly efficient and stable electrocatalysts for oxygen evolution reaction is of significant importance for applications in energy conversion and storage. Modulation of electronic structure of catalysts is critical for improving the performance of the resulting electrodes. Here, we report a facile way to engineer the electronic structure of Ni3FeS by coating a thin polyaniline (PANI) layer for improving electrocatalytic activity for overall water splitting. Experimental investigations unveil that the strong electronic interactions between the lone electron pairs of nitrogen in PANI and d orbitals of iron, nickel in Ni3FeS result in an electron-rich structure of Ni and Fe, and consequently optimize the adsorption and desorption processes to promote the OER activity. Remarkably, the resulting PANI/Ni3FeS electrode exhibited much enhanced OER performance with a low overpotential of 143 mV at a current density of 10 mA·cm-2and good stability. Promisingly, coupled with the reported MoNi4/MoO2electrode, the two-electrode electrolyzer achieved a current density of 10 mA·cm-2with a relatively low potential of 1.55 V, and can generate oxygen and hydrogen bubbles steadily driven by a commercial dry battery, endowed the composite electrocatalyst with high potential for practical applications.

14.
Angew Chem Int Ed Engl ; 60(17): 9301-9305, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33576131

RESUMO

Supercages of faujasite (FAU)-type zeolites serve as a robust scaffold for stabilizing dinuclear (Mo2 S4 ) and tetranuclear (Mo4 S4 ) molybdenum sulfide clusters. The FAU-encaged Mo4 S4 clusters have a distorted cubane structure similar to the FeMo-cofactor in nitrogenase. Both clusters possess unpaired electrons on Mo atoms. Additionally, they show identical catalytic activity per sulfide cluster. Their catalytic activity is stable (>150 h) for ethene hydrogenation, while layered MoS2 structures deactivate significantly under the same reaction conditions.

15.
Chemistry ; 26(3): 650-658, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31475418

RESUMO

Zinc-cobalt double-metal sulfides (ZCS) as Faradic electrode materials with high energy density have great potential for supercapacitors, but their poor transfer efficiency for electrons and ions hinders their electrochemical response. Herein, ZnCo2 (CO3 )1.5 (OH)3 @ZCS microflower hybrid arrays consisting of thin nanolayer petals were anchored on three-dimensional graphene (ZnCo2 (CO3 )1.5 (OH)3 @ZCS/3DG) by a simple hydrothermal method and additional ion-exchange process. A ZnCo2 (CO3 )1.5 (OH)3 @ZCS/3DG electrode delivered high capacitance (2228 F g-1 at 1 A g-1 ) and long cycling life (85.7 % retention after 17 000 cycles), which are ascribed to the multicomponent structural design. The 3DG conductive substrate improves the electron-transfer dynamics of the electrode material. Meanwhile, the microflowers consisting of thin nanolayer petals could not only provide many active sites for ions to improve the capacitance, but also alleviate the volume expansion to ensure the structural stability. Furthermore, an all-solid-state asymmetric supercapacitor based on a ZnCo2 (CO3 )1.5 (OH)3 @ZCS/3DG electrode achieved a high energy density of 27 W h kg-1 at 528.3 W kg-1 and exhibits exceptional cyclic stability for 23 000 cycles. Its ability to light a blue LED for 9 min verified the feasibility of its application for energy storage devices.

16.
Angew Chem Int Ed Engl ; 59(12): 4763-4769, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31881117

RESUMO

Metal-organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium-ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.

17.
Small ; 14(10)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29318748

RESUMO

Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal-based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal-air batteries. Here, Co9-x Fex S8 /Co,Fe-N-C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S-Co9-x Fex S8 @rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe-ZIF (CoFe-ZIF@GO) as precursors. Benefiting from the synergistic effect of OER active CoFeS and ORR active Co,Fe-N-C in a single component, as well as high dispersity and enhanced conductivity derived from rGO coating and Fe-doping, the obtained S-Co9-x Fex S8 @rGO-10 catalyst shows an ultrasmall overpotential of ≈0.29 V at 10 mA cm-2 in OER and a half-wave potential of 0.84 V in ORR, combining a superior oxygen electrode activity of ≈0.68 V in 0.1 m KOH.

18.
Angew Chem Int Ed Engl ; 57(44): 14555-14559, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30182419

RESUMO

Hydrogenation on Mo and W sulfides occurs at the edges of the sulfide slabs. The rate of hydrogen addition is directly proportional to the concentration of sulfhydryl (SH) groups at the slab edge and the metal atom attached to it. Sulfhydryl groups vicinal to edge-incorporated Ni hydrogenate with much higher rates than SH close to Mo and W. Each subset of SH groups, however, exhibits nearly identical intrinsic activity and selectivity, independent of the sulfide composition. The higher activity of Ni-WS2 compared to Ni-MoS2 stems from a higher concentration of SH groups on the former sulfide associated with a higher tendency of its surface vacancies to react with H2 .

19.
Angew Chem Int Ed Engl ; 57(28): 8654-8658, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29719107

RESUMO

Transition-metal sulfides (TMSs) have emerged as important candidates for oxygen evolution reaction (OER) electrocatalysts. Now a hybrid nanostructure has been decorated with CeOx nanoparticles on the surface of ZIF-67-derived hollow CoS through in situ generation. Proper control of the amount of CeOx on the surface of CoS can achieve precise tuning of Co2+ /Co3+ ratio, especially for the induced defects, further boosting the OER activity. Meanwhile, the formation of protective CeOx thin layer effectively inhibits the corrosion by losing cobalt ion species from the active surface into the solution. It is thus a rare example of a hybrid hetero-structural electrocatalyst with CeOx NPs to improve the performance of the hollow TMS nanocage.

20.
Polymers (Basel) ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000779

RESUMO

Developing a reasonable design of a lithiophilic artificial solid electrolyte interphase (SEI) to induce the uniform deposition of Li+ ions and improve the Coulombic efficiency and energy density of batteries is a key task for the development of high-performance lithium metal anodes. Herein, a high-performance separator for lithium metal anodes was designed by the in situ growth of a metal-organic framework (MOF)-derived transition metal sulfide array as an artificial SEI on polypropylene separators (denoted as Co9S8-PP). The high ionic conductivity and excellent morphology provided a convenient transport path and fast charge transfer kinetics for lithium ions. The experimental data illustrate that, compared with commercial polypropylene separators, the Li//Cu half-cell with a Co9S8-PP separator can be cycled stably for 2000 h at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, a Li//LiFePO4 full cell with a Co9S8-PP separator exhibits ultra-long cycle stability at 0.2 C with an initial capacity of 148 mAh g-1 and maintains 74% capacity after 1000 cycles. This work provides some new strategies for using transition metal sulfides to induce the uniform deposition of lithium ions to create high-performance lithium metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA