Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Physiol ; 602(8): 1605-1621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128952

RESUMO

Cardiac arrhythmias pose a major threat to a patient's health, yet prove to be often difficult to predict, prevent and treat. A key mechanism in the occurrence of arrhythmias is disturbed Ca2+ homeostasis in cardiac muscle cells. As a Ca2+-activated non-selective cation channel, TRPM4 has been linked to Ca2+-induced arrhythmias, potentially contributing to translating an increase in intracellular Ca2+ concentration into membrane depolarisation and an increase in cellular excitability. Indeed, evidence from genetically modified mice, analysis of mutations in human patients and the identification of a TRPM4 blocking compound that can be applied in vivo further underscore this hypothesis. Here, we provide an overview of these data in the context of our current understanding of Ca2+-dependent arrhythmias.

2.
Circ J ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034112

RESUMO

BACKGROUND: Asymptomatic premature ventricular complex (PVC) in childhood often disappears over time. However, predictive factors for persistent PVC are unknown. We examined predictive factors for persistent PVCs on initial Holter electrocardiogram (ECG) in pediatric patients with asymptomatic PVC.Methods and Results: The initial Holter ECG findings of untreated PVC patients (n=216) between 2010 and 2021 were examined. Multivariable analysis was performed to clarify predictive factors for subsequent persistent PVC burden for each index (age, sex, PVC burden, PVC origin, minimum and maximum mean RR intervals [RRmin and RRmax, respectively]) of the 3 heartbeats of baseline sinus rhythm immediately before the PVC. The median age at initial Holter ECG was 11.6 years (range 5.8-18.8 years), the PVC burden was 5.22% (range 0.01-44.21%), RRmin was 660 ms, RRmax was 936 ms, RRrange (=RRmax-RRmin) was 273 ms, and 15 (7%) PVC runs were identified. The median follow-up period was 5.1 years (range 0.8-9.4 years), and the final Holter PVC burden was 3.99% (range 0-36.38%). In multivariate analysis, RRrange was the only independent risk factor for predicting a final Holter PVC burden >10%, with an area under the curve of 0.920 using an RRrange of 600 ms as the cut-off value. CONCLUSIONS: A wide RRrange at the initial Holter ECG may be a predictive indicator for persistent PVC in childhood.

3.
Biochem Biophys Res Commun ; 638: 36-42, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436340

RESUMO

We aimed to investigate the effect of apocynin (APO) on delayed afterdepolarizations (DADs) in rat atrial myocytes and the underlying mechanisms. Rat atrial myocytes were isolated by a Langendorff perfusion apparatus. DADs were induced by isoproterenol (ISO). Action potentials (APs) and ion currents were recorded by the whole-cell clamp technique. The fluorescent indicator fluo-4 was used to visualize intracellular Ca2+ transients, and western blotting was used to measure the expression of related proteins. The incidence of DADs in rat atrial myocytes increased significantly after ISO treatment, leading to an increased incidence of triggered activity (TA). The incidence of ISO-induced DADs and TA were reduced by 100.0 µM APO from 48.89% to 25.56% and 17.78% to 5.56%, respectively. In the range of 3.0 µM-300.0 µM, the effect of APO was concentration dependent, with a half maximal inhibitory concentration (IC50) of 120.1 µM and a Hill coefficient of 1.063. APO reversed the increase in transient inward current (Iti) and Na+/Ca2+-exchange current (INCX) densities induced by ISO in atrial myocytes. The frequency of spontaneous Ca2+ transients in atrial myocytes was reduced by 100.0 µM APO. Compared with ISO, APO downregulated the expression of NOX2 and increased the phosphorylation of PLNSer16 and the sarcoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) level; however, it had little effect on ryanodine-receptor channel type-2 (RyR2). These findings showed that APO may block Iti and INCX and reduce intracellular Ca2+ levels in rat atrial myocytes, thus reducing the incidence of ISO-induced DADs and TA.


Assuntos
Fibrilação Atrial , Ratos , Animais , Isoproterenol/farmacologia , Fibrilação Atrial/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
Eur Heart J ; 43(40): 4195-4207, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35822895

RESUMO

AIMS: Cardiac arrhythmias are a major factor in the occurrence of morbidity and sudden death in patients with cardiovascular disease. Disturbances of Ca2+ homeostasis in the heart contribute to the initiation and maintenance of cardiac arrhythmias. Extrasystolic increases in intracellular Ca2+ lead to delayed afterdepolarizations and triggered activity, which can result in heart rhythm abnormalities. It is being suggested that the Ca2+-activated nonselective cation channel TRPM4 is involved in the aetiology of triggered activity, but the exact contribution and in vivo significance are still unclear. METHODS AND RESULTS: In vitro electrophysiological and calcium imaging technique as well as in vivo intracardiac and telemetric electrocardiogram measurements in physiological and pathophysiological conditions were performed. In two distinct Ca2+-dependent proarrhythmic models, freely moving Trpm4-/- mice displayed a reduced burden of cardiac arrhythmias. Looking further into the specific contribution of TRPM4 to the cellular mechanism of arrhythmias, TRPM4 was found to contribute to a long-lasting Ca2+ overload-induced background current, thereby regulating cell excitability in Ca2+ overload conditions. To expand these results, a compound screening revealed meclofenamate as a potent antagonist of TRPM4. In line with the findings from Trpm4-/- mice, 10 µM meclofenamate inhibited the Ca2+ overload-induced background current in ventricular cardiomyocytes and 15 mg/kg meclofenamate suppressed catecholaminergic polymorphic ventricular tachycardia-associated arrhythmias in a TRPM4-dependent manner. CONCLUSION: The presented data establish that TRPM4 represents a novel target in the prevention and treatment of Ca2+-dependent triggered arrhythmias.


Assuntos
Canais de Cátion TRPM , Taquicardia Ventricular , Camundongos , Animais , Cálcio/metabolismo , Ácido Meclofenâmico/metabolismo , Arritmias Cardíacas , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo
5.
Indian Pacing Electrophysiol J ; 23(3): 91-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36871891

RESUMO

Termination of focal atrial tachycardia with adenosine is considered a defining feature for triggered activity. Recent evidence, however, suggests that the perinodal adenosine-sensitive AT has reentry as the mechanism of tachycardia. In this report, we were able to confirm the mechanism of AT as reentry by observing the response to programmed electrical stimulation and demonstrating the fallacy of traditional teaching that the adenosine responsiveness of AT is a criterion for labeling the mechanism as triggered activity.

6.
Am J Emerg Med ; 44: 480.e5-480.e7, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33221113

RESUMO

One of the less frequent underlying mechanisms of ventricular tachycardia (VT) is triggered activity. Triggered activity refers to an extrasystole due to a premature depolarization that occurs when the amplitude of an early or delayed afterdepolarization brings the cardiac membrane to its threshold potential. Hydrochlorothiazide and hydroxyzine can prolong repolarization and QT interval and are associated with early afterdepolarizations. Cyclic AMP-mediated, delayed afterdepolarizations can occur as a result of catecholaminergic surge. Delayed afterdepolarization is classically associated with outflow tract (OT) tachycardia, a type of VT that is uniquely defined by its termination with adenosine. We present a case of triggered OT tachycardia for which intravenous amiodarone through its antiadrenergic effect may have been effective. Infusions of magnesium and a cardioselective, ß-receptor antagonist that does not prolong repolarization may have been more appropriate given the concurrent, acquired prolonged QT syndrome. After initial stabilization, considering the underlying VT mechanism may prompt the clinician to select the most appropriate, further treatment.


Assuntos
Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Diagnóstico Diferencial , Quimioterapia Combinada , Ecocardiografia , Eletrocardiografia , Serviço Hospitalar de Emergência , Humanos , Masculino , Pessoa de Meia-Idade , Taquicardia Ventricular/tratamento farmacológico
8.
Proc Natl Acad Sci U S A ; 114(3): E270-E279, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049836

RESUMO

Cardiac myocytes normally initiate action potentials in response to a current stimulus that depolarizes the membrane above an excitation threshold. Aberrant excitation can also occur due to spontaneous calcium (Ca2+) release (SCR) from intracellular stores after the end of a preceding action potential. SCR drives the Na+/Ca2+ exchange current inducing a "delayed afterdepolarization" that can in turn trigger an action potential if the excitation threshold is reached. This "triggered activity" is known to cause arrhythmias, but how it is initiated and terminated is not understood. Using computer simulations of a ventricular myocyte model, we show that initiation and termination are inherently random events. We determine the probability of those events from statistical measurements of the number of beats before initiation and before termination, respectively, which follow geometric distributions. Moreover, we elucidate the origin of randomness by a statistical analysis of SCR events, which do not follow a Poisson process observed in other eukaryotic cells. Due to synchronization of Ca2+ releases during the action potential upstroke, waiting times of SCR events after the upstroke are narrowly distributed, whereas SCR amplitudes follow a broad normal distribution with a width determined by fluctuations in the number of independent Ca2+ wave foci. This distribution enables us to compute the probabilities of initiation and termination of bursts of triggered activity that are maintained by a positive feedback between the action potential upstroke and SCR. Our results establish a theoretical framework for interpreting complex and varied manifestations of triggered activity relevant to cardiac arrhythmias.


Assuntos
Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio/fisiologia , Simulação por Computador , Fenômenos Eletrofisiológicos , Retroalimentação Fisiológica , Humanos , Canais Iônicos/fisiologia , Processos Estocásticos
9.
FASEB J ; 32(8): 4229-4240, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29490168

RESUMO

Hibernating animals show resistance to hypothermia-induced cardiac arrhythmias. However, it is not clear whether and how mammalian hibernators are resistant to ischemia-induced arrhythmias. The goal of this investigation was to determine the susceptibility of woodchucks ( Marmota monax) to arrhythmias and their mechanisms after coronary artery occlusion at the same room temperature in both winter, the time for hibernation, and summer, when they do not hibernate. By monitoring telemetric electrocardiograms, we found significantly higher arrhythmia scores, calculated as the severity of arrhythmias, with incidence of ventricular tachycardia, ventricular fibrillation, and thus sudden cardiac death (SCD) in woodchucks in summer than they had in winter. The level of catalase expression in woodchuck hearts was significantly higher, whereas the level of oxidized Ca2+/calmodulin-dependent protein kinase II (CaMKII) was lower in winter than it was in summer. Ventricular myocytes isolated from woodchucks in winter were more resistant to H2O2-induced early afterdepolarizations (EADs) compared with myocytes isolated from woodchucks in summer. The EADs were eliminated by inhibiting CaMKII (with KN-93), l-type Ca current (with nifedipine), or late Na+ current (with ranolazine). In woodchucks, in the summer, the arrhythmia score was significantly reduced by overexpression of catalase ( via adenoviral vectors) or the inhibition of CaMKII (with KN-93) in the heart. This study suggests that the heart of the mammalian hibernator is more resistant to ischemia-induced arrhythmias and SCD in winter. Increased antioxidative capacity and reduced CaMKII activity may confer resistance in woodchuck hearts against EADs and arrhythmias during winter. The profound protection conferred by catalase overexpression or CaMKII inhibition in this novel natural animal model may provide insights into clinical directions for therapy of arrhythmias.-Zhao, Z., Kudej, R. K., Wen, H., Fefelova, N., Yan, L., Vatner, D. E., Vatner, S. F., Xie, L.-H. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck).


Assuntos
Antioxidantes/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/prevenção & controle , Mamíferos/metabolismo , Marmota/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Vasos Coronários/metabolismo , Modelos Animais de Doenças , Hibernação/fisiologia , Hipotermia/metabolismo , Estações do Ano , Temperatura
10.
J Mol Cell Cardiol ; 114: 288-299, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29217432

RESUMO

RATIONALE: The major role of a transverse-tubular (TT) network in a cardiac cell is to facilitate effective excitation-contraction coupling and signaling. The TT network structures are heterogeneous within a single cell, and vary between different types of cells and species. They are also remodeled in cardiac diseases. However, how different TT network structures predispose cardiac cells to arrhythmogenesis remains to be revealed. OBJECTIVE: To systematically investigate the roles of TT network structure and the underlying mechanisms in the genesis of intracellular calcium (Ca2+) alternans and triggered activity (TA). METHODS AND RESULTS: Based on recent experimental observations, different TT network structures, including uniformly and non-uniformly random TT distributions, were modeled in a cardiac cell model consisting of a three-dimensional network of Ca2+ release units (CRUs). Our simulations showed that both Ca2+ alternans and Ca2+ wave-mediated TA were promoted when the fraction of orphaned CRUs was in an intermediate range, but suppressed in cells exhibiting either well-organized TT networks or low TT densities. Ca2+ alternans and TA could be promoted by low TT densities when the cells were small or the CRU coupling was strong. Both alternans and TA occurred more easily in uniformly random TT networks than in non-uniformly random TT networks. Subcellular spatially discordant Ca2+ alternans was promoted by non-uniformly random TT networks but suppressed by increasing CRU coupling strength. These mechanistic insights provide a holistic understanding of the effects of TT network structure on the susceptibility to arrhythmogenesis. CONCLUSIONS: The TT network plays important roles in promoting Ca2+ alternans and TA, and different TT network structures may predispose cardiac cells differently to arrhythmogenesis.


Assuntos
Sinalização do Cálcio , Espaço Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Canais de Cálcio Tipo L/metabolismo , Tamanho Celular , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Modelos Cardiovasculares , Trocador de Sódio e Cálcio/metabolismo
11.
J Electrocardiol ; 51(2): 163-169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29287718

RESUMO

The electrophysiologic mechanisms responsible for the initiation and maintenance of ventricular tachycardia (VT) include enhanced automaticity, triggered activity and reentry. Differentiating between these three mechanisms can be challenging for the clinician and usually requires an invasive electrophysiology study. Establishing the underlying VT mechanism in a particular patient is helpful to define the optimal therapeutic approach, including the selection of pharmacologic agents or delineation of an ablation strategy. The purpose of this review is to provide insight into the possible VT mechanisms based on noninvasive clues from the clinical history, 12-lead electrocardiogram, tachycardia onset and termination and the response to pharmacologic manipulation.


Assuntos
Antiarrítmicos/uso terapêutico , Técnicas Eletrofisiológicas Cardíacas , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Diagnóstico Diferencial , Eletrocardiografia , Humanos , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco
12.
J Physiol ; 595(12): 4001-4008, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28181690

RESUMO

Although atrial fibrillation (AF) is the most commonly encountered cardiac arrhythmia, the basic mechanisms underlying this disorder remain incompletely understood. During the past decade or so, it has become clear that alterations in intracellular Ca2+ handling may play a role in the pathogenesis of AF. Studies in small and large animal models, as well as atrial samples from patients with different forms of AF, have implicated ryanodine receptor type 2 (RyR2) dysfunction and enhanced spontaneous Ca2+ release events from the sarcoplasmic reticulum (SR) as a potential cause of proarrhythmic cellular ectopic (triggered) activity in AF. The molecular mechanisms leading to RyR2 dysfunction and SR Ca2+ leak depend on the clinical stage of AF or specific animal model studied. This review focuses on the mechanisms and role of calcium-mediated cellular triggered activity in AF, and addresses some of the current controversies in the field.


Assuntos
Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Animais , Átrios do Coração/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
13.
Europace ; 19(5): 858-865, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525920

RESUMO

AIMS: The chronic complete atrioventricular block (CAVB) dog is highly sensitive for drug-induced torsade de pointes (TdP) arrhythmias. Focal mechanisms have been suggested as trigger for TdP onset; however, its exact mechanism remains unclear. In this study, detailed mapping of the ventricles was performed to assess intraventricular heterogeneity of repolarization in relation to the initiation of TdP. METHODS AND RESULTS: In 8 CAVB animals, 56 needles, each containing 4 electrodes, were inserted in the ventricles. During right ventricular apex pacing (cycle length: 1000-1500 ms), local unipolar electrograms were recorded before and after administration of dofetilide to determine activation and repolarization times (RTs). Maximal RT differences were calculated in the left ventricle (LV) within adjacent electrodes in different orientations (transmural, vertical, and horizontal) and within a square of four needles (cubic dispersion). Dofetilide induced TdP in five out of eight animals. Right ventricle-LV was similar between inducible and non-inducible dogs at baseline (327 ± 30 vs. 345 ± 17 ms) and after dofetilide administration (525 ± 95 vs. 508 ± 15 ms). All measurements of intraventricular dispersion were not different at baseline, but this changed for horizontal (206 ± 20 vs. 142 ± 34 ms) and cubic dispersion (272 ± 29 vs. 176 ± 48 ms) after dofetilide: significantly higher values in inducible animals. Single ectopic beats and the first TdP beat arose consistently from a subendocardially located electrode terminal with the shortest RT in the region with largest RT differences. CONCLUSION: Chronic complete atrioventricular block dogs susceptible for TdP demonstrate higher RT differences. Torsade de pointes arises from a region with maximal heterogeneity of repolarization suggesting that a minimal gradient is required in order to initiate TdP.


Assuntos
Bloqueio Atrioventricular/complicações , Bloqueio Atrioventricular/fisiopatologia , Mapeamento Potencial de Superfície Corporal/métodos , Modelos Animais de Doenças , Sistema de Condução Cardíaco/fisiopatologia , Torsades de Pointes/etiologia , Torsades de Pointes/fisiopatologia , Animais , Doença Crônica , Cães , Humanos , Especificidade da Espécie
14.
Circ J ; 82(1): 62-70, 2017 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-28781289

RESUMO

BACKGROUND: Severe hypothermia (SH) is known to be arrhythmogenic, but the effect of therapeutic hypothermia (TH) on arrhythmias is unclear. It is hypothesized that susceptibility to Ca-mediated arrhythmia triggers would be increased only by SH.Methods and Results:Spontaneous Ca release (SCR) and resultant delayed afterdepolarizations (DADs) were evaluated by optical mapping in canine wedge preparations during normothermia (N, 36℃), TH (32℃) or SH (28℃; n=8 each). The slope (amplitude/rise time) of multicellular SCR (mSCR) events, a determinant of triggered activity, was suppressed in TH (24.4±3.4%/s vs. N: 41.5±6.0%/s), but significantly higher in SH (96.3±8.1%/s) producing higher amplitude DADs in SH (35.7±1.6%) and smaller in TH (5.3±1.0% vs. N: 10.0±1.1%, all P<0.05). Triggered activity was only observed in SH. In isolated myocytes, sarcoplasmic reticulum (SR) Ca release kinetics slowed in a temperature-dependent manner, prolonging Ca transient rise time [33±3 (N) vs. 50±6 (TH) vs. 88±12 ms (SH), P<0.05], which can explain the decreased mSCR slope and DAD amplitude in TH. Although the SR Ca content was similar in TH and SH, Ca spark frequency was markedly increased only in SH, suggesting that increased ryanodine receptor open probability could explain the increased triggered activity during SH. CONCLUSIONS: Temperature dependence of Ca release can explain susceptibility to Ca-mediated arrhythmia triggers in SH. This may therefore explain the increased risk of lethal arrhythmia in SH, but not during TH.


Assuntos
Arritmias Cardíacas/etiologia , Hipotermia Induzida/efeitos adversos , Hipotermia/complicações , Animais , Cálcio/metabolismo , Cães , Humanos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo , Temperatura
15.
Pathol Int ; 67(1): 8-16, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27995745

RESUMO

Cardiac arrhythmias have long been regarded as derangement of electrical impulse initiation and conduction within the heart. However, underlying mechanisms for arrhythmogenesis are not fully understood solely from the electrophysiological viewpoint. This review article discusses pathogenesis of arrhythmias from non-electrical aspects, which were elucidated by spatiotemporal imaging of functional molecules in combination with morphological analysis of living heart tissues. Intracellular Ca2+ ([Ca2+ ]i ) overload, caused by myocardial injury, provokes Ca2+ waves that could lead to abnormal excitations, i.e., triggered arrhythmias. Depressed Ca2+ release from the sarcoplasmic reticulum, caused by ischemia, heart failure, or T-tubular remodeling, results in spatiotemporally inhomogeneous [Ca2+ ]i dynamics that could disturb impulse conduction, leading to reentrant tachyarrhythmias. Impairment of the gap junction-mediated intercellular communications, which provokes derangement of impulse propagation of the myocardium, also leads to reentrant arrhythmias. Interpositions of non-cardiomyocytes, especially fibroblasts, in the myocardium could also contribute to arrhythmogenesis via heterocellular gap-junctional coupling with cardiomyocytes. Furthermore, alterations in myocardial histology, e.g., density and arrangements of myocytes in association with gap-junctional distributions, could constitute important pathologic bases of atrial fibrillation. Integration of these molecular, functional, and morphological features of the myocardium, unveiled by experimental pathological approaches, would pave a new way for understanding pathogenesis of cardiac arrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Animais , Humanos
16.
Int J Mol Sci ; 18(4)2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358314

RESUMO

BACKGROUND: Hydrogen peroxide (H2O2)-induced oxidative stress has been demonstrated to induce afterdepolarizations and triggered activities in isolated myocytes, but the underlying mechanisms remain not fully understood. We aimed to explore whether protein kinase C (PKC) activation plays an important role in oxidative stress-induced afterdepolarizations. METHODS: Action potentials and ion currents of isolated rabbit cardiomyocytes were recorded using the patch clamp technique. H2O2 (1 mM) was perfused to induce oxidative stress and the specific classical PKC inhibitor, Gö 6983 (1 µM), was applied to test the involvement of PKC. RESULTS: H2O2 perfusion prolonged the action potential duration and induced afterdepolarizations. Pretreatment with Gö 6983 prevented the emergence of H2O2-induced afterdepolarizations. Additional application of Gö 6983 with H2O2 effectively suppressed H2O2-induced afterdepolarizations. H2O2 increased the late sodium current (INa,L) (n = 7, p < 0.01) and the L-type calcium current (ICa,L) (n = 5, p < 0.01), which were significantly reversed by Gö 6983 (p < 0.01). H2O2 also increased the transient outward potassium current (Ito) (n = 6, p < 0.05). However, Gö 6983 showed little effect on H2O2-induced enhancement of Ito. CONCLUSIONS: H2O2 induced afterdepolarizations via the activation of PKC and the enhancement of ICa,L and INa,L. These results provide evidence of a link between oxidative stress, PKC activation and afterdepolarizations.


Assuntos
Potenciais da Membrana , Miócitos Cardíacos/fisiologia , Estresse Oxidativo , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Miócitos Cardíacos/metabolismo , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Coelhos
17.
Regul Toxicol Pharmacol ; 77: 75-86, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26884090

RESUMO

In vitro screening of hERG channels are recommended under ICH S7B guidelines to predict drug-induced QT prolongation and Torsade de Pointes (TdP), whereas proarrhythmia is known to be evoked by blockage of other ion channels involved in cardiac contraction and compensation mechanisms. A consortium for drug safety assessment using human iPS cells-derived cardiomyocytes (hiPS-CMs), CSAHi, has been organized to establish a novel in vitro test system that would enable better prediction of drug-induced proarrhythmia and QT prolongation. Here we report the inter-facility and cells lot-to-lot variability evaluated with FPDc (corrected field potential duration), FPDc10 (10% FPDc change concentration), beat rate and incidence of arrhythmia-like waveform or arrest on hiPS-CMs in a multi-electrode array system. Arrhythmia-like waveforms were evident for all test compounds, other than chromanol 293B, that evoked FPDc prolongation in this system and are reported to induce TdP in clinical practice. There was no apparent cells lot-to-lot variability, while inter-facility variabilities were limited within ranges from 3.9- to 20-folds for FPDc10 and about 10-folds for the minimum concentration inducing arrhythmia-like waveform or arrests. In conclusion, the new assay model reported here would enable accurate prediction of a drug potential for proarrhythmia.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Diferenciação Celular , Canal de Potássio ERG1/antagonistas & inibidores , Frequência Cardíaca/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Microeletrodos , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/toxicidade , Testes de Toxicidade/instrumentação , Potenciais de Ação , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Bioensaio , Cardiotoxicidade , Técnicas de Cultura de Células , Células Cultivadas , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/metabolismo , Desenho de Equipamento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Japão , Miócitos Cardíacos/metabolismo , Observação , Reprodutibilidade dos Testes , Medição de Risco , Testes de Toxicidade/métodos , Testes de Toxicidade/normas
18.
J Cardiovasc Electrophysiol ; 25(12): 1350-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25132104

RESUMO

INTRODUCTION: There is no universally accepted method by which to diagnose clinical ventricular tachycardia (VT) due to cAMP-mediated triggered activity. Based on cellular and clinical data, adenosine termination of VT is thought to be consistent with a diagnosis of triggered activity. However, a major gap in evidence mitigates the validity of this proposal, namely, defining the specificity of adenosine response in well-delineated reentrant VT circuits. To this end, we systematically studied the effects of adenosine in a model of canine reentrant VT and in human reentrant VT, confirmed by 3-dimensional, pace- and substrate mapping. METHODS AND RESULTS: Adenosine (12 mg [IQR 12-24]) failed to terminate VT in 31 of 31 patients with reentrant VT due to structural heart disease, and had no effect on VT cycle length (age, 67 years [IQR 53-74]); ejection fraction, 35% [IQR 20-55]). In contrast, adenosine terminated VT in 45 of 50 (90%) patients with sustained focal right or left outflow tract tachycardia. The sensitivity of adenosine for identifying VT due to triggered activity was 90% (95% CI, 0.78-0.97) and its specificity was 100% (95% CI, 0.89-1.0). Additionally, reentrant circuits were mapped in the epicardial border zone of 4-day-old infarcts in mongrel dogs. Adenosine (300-400 µg/kg) did not terminate sustained VT or have any effect on VT cycle length. CONCLUSION: These data support the concept that adenosine's effects on ventricular myocardium are mechanism specific, such that termination of VT in response to adenosine is diagnostic of cAMP-mediated triggered activity.


Assuntos
Adenosina/administração & dosagem , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antiarrítmicos/administração & dosagem , Mapeamento Potencial de Superfície Corporal/efeitos dos fármacos , Cães , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
19.
JACC Clin Electrophysiol ; 10(2): 379-401, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127010

RESUMO

Most forms of sustained ventricular tachycardia (VT) are caused by re-entry, resulting from altered myocardial conduction and refractoriness secondary to underlying structural heart disease. In contrast, VT caused by triggered activity (TA) is unrelated to an abnormal structural substrate and is often caused by molecular defects affecting ion channel function or regulation of intracellular calcium cycling. This review summarizes the cellular and molecular bases underlying TA and exemplifies their clinical relevance with selective representative scenarios. The underlying basis of TA caused by delayed afterdepolarizations is related to sarcoplasmic reticulum calcium overload, calcium waves, and diastolic sarcoplasmic reticulum calcium leak. Clinical examples of TA caused by delayed afterdepolarizations include sustained right and left ventricular outflow tract tachycardia and catecholaminergic polymorphic VT. The other form of afterpotentials, early afterdepolarizations, are systolic events and inscribe early afterdepolarizations during phase 2 or phase 3 of the action potential. The fundamental defect is a decrease in repolarization reserve with associated increases in late plateau inward currents. Malignant ventricular arrhythmias in the long QT syndromes are initiated by early afterdepolarization-mediated TA. An understanding of the molecular and cellular bases of these arrhythmias has resulted in generally effective pharmacologic-based therapies, but these are nonspecific agents that have off-target effects. Therapeutic efficacy may need to be augmented with an implantable defibrillator. Next-generation therapies will include novel agents that rescue arrhythmogenic abnormalities in cellular signaling pathways and gene therapy approaches that transfer or edit pathogenic gene variants or silence mutant messenger ribonucleic acid.


Assuntos
Cálcio , Taquicardia Ventricular , Humanos , Cálcio/metabolismo , Cálcio/uso terapêutico , Arritmias Cardíacas , Coração , Miocárdio/patologia
20.
Heart Rhythm ; 21(9): 1669-1676, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38762134

RESUMO

BACKGROUND: Autonomic nerve activity is important in the mechanisms of paroxysmal atrial fibrillation (PAF). OBJECTIVE: The purpose of this study was to test the hypothesis that a single burst of skin sympathetic nerve activity (SKNA) can toggle on and off PAF or premature atrial contraction (PAC) clusters. METHODS: Simultaneous recording of SKNA and electrocardiogram (neuECG) recording was performed over 7 days in patients with PAF. RESULTS: In study 1, 8 patients (7 men and 1 woman; age 62 ± 8 years) had 124 episodes of PAF. An SKNA burst toggled both on and off PAF in 8 episodes (6.5%) (type 1), toggled on but not off in 12 episodes (9.7%) (type 2), and toggled on a PAC cluster followed by PAF in 4 episodes (3.2%) (type 3). The duration of these PAF episodes was <10 minutes. The remaining 100 episodes (80.6%) were associated with active SKNA bursts throughout PAF (type 4) and lasted longer than type 1 (P = .0185) and type 2 (P = .0027) PAF. There were 47 PAC clusters. Among them, 24 (51.1%) were toggled on and off, and 23 (48.9%) were toggled on but not off by an SKNA burst. In study 2, 17 patients (9 men and 8 women; age 58 ± 12 years) had <10 minutes of PAF (4, 8, 0, and 31 of types 1, 2, 3, and 4, respectively). There were significant circadian variations of all types of PAF. CONCLUSION: A single SKNA burst can toggle short-duration PAF and PAC cluster episodes on and off. The absence of continued SKNA after the onset might have affected the maintenance of these arrhythmias.


Assuntos
Fibrilação Atrial , Complexos Atriais Prematuros , Eletrocardiografia , Sistema Nervoso Simpático , Humanos , Feminino , Masculino , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico , Pessoa de Meia-Idade , Complexos Atriais Prematuros/fisiopatologia , Complexos Atriais Prematuros/diagnóstico , Sistema Nervoso Simpático/fisiopatologia , Idoso , Recidiva , Frequência Cardíaca/fisiologia , Pele/inervação , Seguimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA