Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Molecules ; 29(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39202874

RESUMO

American trypanosomiasis or Chagas disease, caused by Trypanosoma cruzi (T. cruzi), affects approximately 6-7 million people worldwide. However, its pharmacological treatment causes several uncomfortable side effects, causing patients' treatment abandonment. Therefore, there is a need for new and better treatments. In this work, the molecular docking of nine hundred twenty-four FDA-approved drugs on three different sites of trypanothione reductase of T. cruzi (TcTR) was carried out to find potential trypanocidal agents. Finally, biological evaluations in vitro and in vivo were conducted with the selected FDA-approved drugs. Digoxin, alendronate, flucytosine, and dihydroergotamine showed better trypanocidal activity than the reference drugs benznidazole and nifurtimox in the in vitro evaluation against the trypomastigotes form. Further, these FDA-approved drugs were able to reduce 20-50% parasitemia in a short time in an in vivo model, although with less efficiency than benznidazole. Therefore, the results suggest a combined therapy of repurposed and canonical drugs against T. cruzi infection.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases , Tripanossomicidas , Trypanosoma cruzi , Tripanossomicidas/farmacologia , Tripanossomicidas/química , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Doença de Chagas/tratamento farmacológico , Animais , Humanos , United States Food and Drug Administration , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Estados Unidos , Camundongos
2.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792079

RESUMO

Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.


Assuntos
Amida Sintases , Glutationa , NADH NADPH Oxirredutases , Trypanosoma , NADH NADPH Oxirredutases/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , Humanos , Amida Sintases/metabolismo , Amida Sintases/antagonistas & inibidores , Trypanosoma/efeitos dos fármacos , Trypanosoma/metabolismo , Glutationa/metabolismo , Glutationa/análogos & derivados , Animais , Espermidina/análogos & derivados , Espermidina/metabolismo , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Leishmaniose/tratamento farmacológico , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Trypanosomatina/metabolismo , Trypanosomatina/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo
3.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274889

RESUMO

Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic compounds have been found in drug discovery campaigns as promising antileishmanial molecules. Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis), and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileishmanial activity in different studies. In this work, we have tested the in vitro efficacy of these two nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR), thus suggesting that these compounds may target thiol metabolism through a different mechanism of action.


Assuntos
Leishmania infantum , Nitroimidazóis , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/metabolismo , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Animais , Camundongos , Humanos , Células RAW 264.7 , Antiprotozoários/farmacologia , Antiprotozoários/química , Radicais Livres/metabolismo , Células Hep G2 , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , NADH NADPH Oxirredutases
4.
Bioorg Chem ; 138: 106624, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295238

RESUMO

Nowadays, leishmaniasis is still treated with outdated drugs that present several obstacles related to their high toxicity, long duration, parenteral administration, high costs and drug resistance. Therefore, there is an urgent demand for safer and more effective novel drugs. Previous studies indicated that selenium compounds are promising derivatives for innovative therapy in leishmaniasis treatment. With this background, a new library of 20 selenocyanate and diselenide derivatives were designed based on structural features present in the leishmanicidal drug miltefosine. Compounds were initially screened against promastigotes of L. major and L. infantum and their cytotoxicity was evaluated in THP-1 cells. Compounds B8 and B9 were the most potent and less cytotoxic and were further screened for the intracellular back transformation assay. The results obtained revealed that B8 and B9 showed EC50 values of 7.7 µM and 5.7 µM, respectively, in L. major amastigotes, while they presented values of 6.0 µM and 7.4 µM, respectively, against L. infantum amastigotes. Furthermore, they exerted high selectivity (60 < SI > 70) towards bone marrow-derived macrophages. Finally, these compounds exhibited higher TryR inhibitory activity than mepacrine (IC50 7.6 and 9.2 µM, respectively), and induced nitric oxide (NO) and reactive oxygen species (ROS) production in macrophages. These results suggest that the compounds B8 and B9 could not only exert a direct leishmanicidal activity against the parasite but also present an indirect action by activating the microbicidal arsenal of the macrophage. Overall, these new generation of diselenides could constitute promising leishmanicidal drug candidates for further studies.


Assuntos
Antiprotozoários , Leishmaniose , Compostos de Selênio , Animais , Camundongos , Antiprotozoários/química , Macrófagos , Leishmaniose/tratamento farmacológico , Compostos de Selênio/farmacologia , Camundongos Endogâmicos BALB C
5.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003236

RESUMO

Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Humanos , Simulação de Acoplamento Molecular , Leishmania/metabolismo , NADH NADPH Oxirredutases/metabolismo , Leishmaniose/parasitologia , Antiprotozoários/uso terapêutico
6.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615531

RESUMO

BACKGROUND: As a result of the paucity of treatment, Leishmaniasis continues to provoke about 60,000 deaths every year worldwide. New molecules are needed, and drug discovery research is oriented toward targeting proteins crucial for parasite survival. Among them, trypanothione reductase (TR) is of remarkable interest owing to its vital role in Leishmania species protozoan parasite life. Our previously identified compound 1 is a novel chemotype endowed with a unique mode of TR inhibition thanks to its binding to a formerly unknown but druggable site at the entrance of the NADPH binding cavity, absent in human glutathione reductase (hGR). METHODS: We designed and synthesized new 3-amino-1-arylpropan-1-one derivatives structurally related to compound 1 and evaluated their potential inhibition activity on TR from Leishmania infantum (LiTR). Cluster docking was performed to assess the binding poses of the compounds. RESULTS: The newly synthesized compounds were screened at a concentration of 100 µM in in vitro assays and all of them proved to be active with residual activity percentages lower than 75%. CONCLUSIONS: Compounds 2a and 2b were the most potent inhibitors found, suggesting that an additional aromatic ring might be promising for enzymatic inhibition. Further structure-activity relationships are needed to optimize our compounds activity.


Assuntos
Antiprotozoários , Leishmania infantum , Humanos , NADP/metabolismo , Modelos Moleculares , NADH NADPH Oxirredutases , Sítios de Ligação , Antiprotozoários/farmacologia
7.
J Biol Inorg Chem ; 27(1): 175-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981207

RESUMO

In a quest to discover new formulations for the treatment of various parasitic diseases, a series of heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR')2], where R=C6H5 for 1-4 and p-CH3C6H4 for 5-8, were synthesized, characterized and evaluated for their biological potential against L. tropica. All the synthesized complexes were fully characterized by elemental analysis, FT-IR, multinuclear (1H and 13C) NMR spectroscopy and X-ray crystallography. The crystal structures for [BiPh3(O2CC6H4(o-Br))2] (1), [BiPh3(O2CC2H2C6H4)2] (2), [BiPh3(O2CC6H4(m-NO2))2] (3) and [BiPh3(O2CC6H4(2-OH,3-CH3))2] (4) were determined and found to have a distorted pentagonal bipyramidal molecular geometry with seven coordinated bismuth center for 1-3 and for 4 distorted octahedral geometry, respectively. All the synthesized complexes demonstrated a moderate to significant activity against leishmania parasites. A broad analytical approach was followed to testify the stability for (1-8) in solid state as well as in solution and in leishmanial culture M199, ensuring them to be stable enough to exert a significant antileishmanial effect with promising results. Cytotoxicity profile suggests that tris(tolyl) derivatives show lower toxicity against isolated lymphocytes with higher antileishmanial potential. Molecular docking studies were carried out to reveal the binding modes for (1-8) targeting the active site of trypanothione reductase (TR) (PDB ID: 4APN) and Trypanothione Synthetase-Amidase structure (PDB ID 2vob).


Assuntos
Antiprotozoários , Bismuto , Antiprotozoários/química , Antiprotozoários/farmacologia , Bismuto/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Bioorg Med Chem ; 58: 116577, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189560

RESUMO

Chagas disease (CD) is a centenarian neglected parasitosis caused by the protozoan Trypanosoma cruzi (T. cruzi). Despite the continuous efforts of many organizations and institutions, CD is still an important human health problem worldwide. A lack of a safe and affordable treatment has led drug discovery programmes to focus, for years, on the search for molecules enabling interference with enzymes that are essential for T. cruzi survival. In this work, the authors want to offer a brief overview of the different validated targets that are involved in diverse parasite pathways: glycolysis, sterol synthesis, the de novo biosynthesis of pyrimidine nucleotides, the degradative processing of peptides and proteins, oxidative stress damage and purine salvage and nucleotide synthesis and metabolism. Their structural aspects, function, active sites, etc. were studied and considered with the aim of defining molecular bases in the search for new effective treatments for CD. This review also compiles, as much as possible, all the inhibitors reported to date against these T. cruzi targets, serving as a reference for future research in this field.


Assuntos
Doença de Chagas/tratamento farmacológico , Descoberta de Drogas , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/metabolismo , Humanos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Tripanossomicidas/síntese química , Tripanossomicidas/química
9.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362102

RESUMO

American trypanosomiasis is a worldwide health problem that requires attention due to ineffective treatment options. We evaluated n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives against trypomastigotes of the Trypanosoma cruzi strains NINOA and INC-5. An in silico analysis of the interactions of 1,4-di-N-oxide on the active site of trypanothione reductase (TR) and an enzyme inhibition study was carried out. The n-butyl series compound identified as T-150 had the best trypanocidal activity against T. cruzi trypomastigotes, with a 13% TR inhibition at 44 µM. The derivative T-147 behaved as a mixed inhibitor with Ki and Ki' inhibition constants of 11.4 and 60.8 µM, respectively. This finding is comparable to the TR inhibitor mepacrine (Ki = 19 µM).


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Quinoxalinas/química , Óxidos/farmacologia , NADH NADPH Oxirredutases , Doença de Chagas/tratamento farmacológico , Inibidores Enzimáticos/química
10.
Antimicrob Agents Chemother ; 65(10): e0059021, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34339279

RESUMO

This work reports the synthesis and characterization by Fourier transform infrared spectroscopy (FTIR), 1H, 13C, and 79Se nuclear magnetic resonance (NMR), mass spectrometry, and elemental analysis techniques as well as the in vitro evaluation of the leishmanicidal activity of 13 new selenophosphoramidate derivatives. Among the new compounds, four of them (compounds 1f, 1g, 2f, and 2g), which exhibited the best profiles, were tested against infected macrophages and were selected for further studies related to their leishmanicidal mechanism. In this regard, trypanothione redox system alteration was determined. Compound 1g, under similar conditions, was more effective than the corresponding references. In addition, theoretical calculations showed that this compound also presents most physicochemical and pharmacokinetic properties within the ranges expected for orally available drugs. It is believed that selenophosphoramidate functionalities may represent a scaffold to be explored toward the development of new agents for leishmania treatment.


Assuntos
Antiprotozoários , Leishmania , Preparações Farmacêuticas , Selênio , Amidas , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Ácidos Fosfóricos , Selênio/farmacologia
11.
J Comput Aided Mol Des ; 35(8): 871-882, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181199

RESUMO

Assessment of target druggability guided by search and characterization of hot spots is a pivotal step in early stages of drug-discovery. The raw output of FTMap provides the data to perform this task, but it relies on manual intervention to properly combine different sets of consensus sites, therefore allowing identification of hot spots and evaluation of strength, shape and distance among them. Thus, the user's previous experience on the target and the software has a direct impact on how data generated by FTMap server can be explored. DRUGpy plugin was developed to overcome this limitation. By automatically assembling and scoring all possible combinations of consensus sites, DRUGpy plugin provides FTMap users a straight-forward method to identify and characterize hot spots in protein targets. DRUGpy is available in all operating systems that support PyMOL software. DRUGpy promptly identifies and characterizes pockets that are predicted by FTMap to bind druglike molecules with high-affinity (druggable sites) or low-affinity (borderline sites) and reveals how protein conformational flexibility impacts on the target's druggability. The use of DRUGpy on the analysis of trypanothione reductases (TR), a validated drug target against trypanosomatids, showcases the usefulness of the plugin, and led to the identification of a druggable pocket in the conserved dimer interface present in this class of proteins, opening new perspectives to the design of selective inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , NADH NADPH Oxirredutases/antagonistas & inibidores , Software , Sítios de Ligação , Inibidores Enzimáticos/química , Humanos , Ligantes , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica
12.
Parasitology ; 148(13): 1706-1714, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35060464

RESUMO

The diagnosis of visceral leishmaniasis (VL) has improved with the search of novel antigens; however, their performance is limited when samples from VL/human immunodeficiency virus (HIV)-coinfected patients are tested. In this context, studies conducted to identify more suitable antigens to detect both VL and VL/HIC coinfection cases should be performed. In the current study, phage display was performed using serum samples from healthy subjects and VL, HIV-infected and VL/HIV-coinfected patients; aiming to identify novel phage-exposed epitopes to be evaluated with this diagnostic purpose. Nine non-repetitive and valid sequences were identified, synthetized and tested as peptides in enzyme-linked immunosorbent assay experiments. Results showed that three (Pep2, Pep3 and Pep4) peptides showed excellent performance to diagnose VL and VL/HIV coinfection, with 100% sensitivity and specificity values. The other peptides showed sensitivity varying from 50.9 to 80.0%, as well as specificity ranging from 60.0 to 95.6%. Pep2, Pep3 and Pep4 also showed a potential prognostic effect, since specific serological reactivity was significantly decreased after patient treatment. Bioinformatics assays indicated that Leishmania trypanothione reductase protein was predicted to contain these three conformational epitopes. In conclusion, data suggest that Pep2, Pep3 and Pep4 could be tested for the diagnosis of VL and VL/HIV coinfection.


Assuntos
Bacteriófagos , Coinfecção , Infecções por HIV , Leishmaniose Visceral , Coinfecção/diagnóstico , Epitopos , HIV , Infecções por HIV/diagnóstico , Humanos , Leishmaniose Visceral/diagnóstico
13.
Bioorg Chem ; 111: 104823, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798844

RESUMO

Herein, the design and synthesis of new 2-phenyl(pyridinyl)benzimidazolequinones and their 5-phenoxy derivatives as potential anti-Trypanosoma cruzi agents are described. The compounds were evaluated in vitro against the epimastigotes and trypomastigote forms of Trypanosoma cruzi. The replacing of a benzene moiety in the naphthoquinone system by an imidazole enhanced the trypanosomicidal activity against Trypanosoma cruzi. Three of the tested compounds (11a-c) showed potent trypanosomicidal activity and compound 11a, with IC50 of 0.65 µM on the trypomastigote form of T. cruzi, proved to be 15 times more active than nifurtimox. Additionally, molecular docking studies indicate that the quinone derivatives 11a-c could have a multitarget profile interacting preferentially with trypanothione reductase and Old Yellow Enzyme.


Assuntos
Benzimidazóis/farmacologia , Desenho de Fármacos , Quinonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinonas/síntese química , Quinonas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
14.
Parasitol Res ; 120(6): 2199-2218, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33963899

RESUMO

Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 µM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 µM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 µM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.


Assuntos
Amidas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Piperidonas/farmacologia , Tripanossomicidas/farmacologia , Amidas/química , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , Piperidonas/química , Células Vero
15.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206087

RESUMO

Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis's causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.


Assuntos
Leishmania infantum/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Compostos Fitoquímicos/farmacologia , Triterpenos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Humanos , Absorção Intestinal , Leishmania infantum/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacocinética , Proteínas de Protozoários/antagonistas & inibidores , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/farmacocinética
16.
Artigo em Inglês | MEDLINE | ID: mdl-33046492

RESUMO

Two new series of 28 selenocyanate and diselenide derivatives containing amide moieties were designed, synthesized, and evaluated for their leishmanicidal activity against Leishmania infantum axenic amastigotes, and selectivity was assessed in human THP-1 cells. Eleven compounds exhibited excellent leishmanicidal activity with EC50 values lower than the reference drug miltefosine (EC50 = 2.84 µM). In addition, for six of them the selectivity index ranged from 9 to >1,442, greater than both references used. The most potent and selective compounds were compounds 2h, 2k, and 2m that displayed EC50 values of 0.52, 1.19, and 0.50 µM, respectively, and a high selectivity index (SI) when tested against THP-1 monocytic cells (SI = >1,442, >672, and >1,100, respectively). These derivatives showed an efficacy similar to that of the reference drugs but much better SI values. They also showed interesting activity values against infected macrophages. Trypanothione reductase (TryR) activity and intracellular thiol level measurement assays were performed for the three best compounds in an attempt to elucidate their mechanism of action. Despite that the new analogs exhibited comparable or better inhibitory activities than the reference TryR inhibitors, more studies are necessary to confirm this result. In summary, our findings suggest that the three compounds described here could constitute leading leishmanicidal drug candidates.


Assuntos
Antiprotozoários , Preparações Farmacêuticas , Selênio , Amidas , Antiprotozoários/farmacologia , Humanos , NADH NADPH Oxirredutases , Selênio/farmacologia
17.
Amino Acids ; 52(2): 247-259, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31037461

RESUMO

Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis. This enzyme is fundamental for parasite survival in the human host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize the hydrogen peroxide produced by host macrophages during infection. Recently, we solved the X-ray structure of TR in complex with the diaryl sulfide compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine), which impairs the parasite defense against the reactive oxygen species by inhibiting TR with high efficiency. The compound binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding. On the basis of the RDS 777-TR complex, we synthesized structurally related diaryl sulfide analogs as TR inhibitors able to compete for trypanothione binding to the enzyme and to kill the promastigote in the micromolar range. One of the most active among these compounds (RDS 562) was able to reduce the trypanothione concentration in cell of about 33% via TR inhibition. RDS 562 inhibits selectively Leishmania TR, while it does not inhibit the human homolog glutathione reductase.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Sulfetos/química , Sulfetos/farmacologia , Motivos de Aminoácidos , Domínio Catalítico , Glutationa/análogos & derivados , Glutationa/metabolismo , Humanos , Leishmania infantum/enzimologia , Leishmania infantum/metabolismo , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Modelos Moleculares , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espermidina/análogos & derivados , Espermidina/metabolismo
18.
Molecules ; 25(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326257

RESUMO

The protozoans Leishmania and Trypanosoma, belonging to the same Trypanosomatidae family, are the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis. Overall, these infections affect millions of people worldwide, posing a serious health issue as well as socio-economical concern. Current treatments are inadequate, mainly due to poor efficacy, toxicity, and emerging resistance; therefore, there is an urgent need for new drugs.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Desenvolvimento de Medicamentos , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/química , Oxirredução/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Trypanosoma/metabolismo , Sítios de Ligação , Desenho de Fármacos , Desenvolvimento de Medicamentos/métodos , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Artigo em Inglês | MEDLINE | ID: mdl-30782984

RESUMO

A novel series of thirty-one N-substituted urea, thiourea, and selenourea derivatives containing diphenyldiselenide entities were synthesized, fully characterized by spectroscopic and analytical methods, and screened for their in vitro leishmanicidal activities. The cytotoxic activity of these derivatives was tested against Leishmania infantum axenic amastigotes, and selectivity was assessed in human THP-1 cells. Thirteen of the synthesized compounds showed a significant antileishmanial activity, with 50% effective concentration (EC50) values lower than that for the reference drug miltefosine (EC50, 2.84 µM). In addition, the derivatives 9, 11, 42, and 47, with EC50 between 1.1 and 1.95 µM, also displayed excellent selectivity (selectivity index ranged from 12.4 to 22.7) and were tested against infected macrophages. Compound 11, a derivative with a cyclohexyl chain, exhibited the highest activity against intracellular amastigotes, with EC50 values similar to those observed for the standard drug edelfosine. Structure-activity relationship analyses revealed that N-aliphatic substitution in urea and selenourea is recommended for the leishmanicidal activity of these analogs. Preliminary studies of the mechanism of action for the hit compounds was carried out by measuring their ability to inhibit trypanothione reductase. Even though the obtained results suggest that this enzyme is not the target for most of these derivatives, their activity comparable to that of the standards and lack of toxicity in THP-1 cells highlight the potential of these compounds to be optimized for leishmaniasis treatment.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/uso terapêutico , Leishmania infantum/efeitos dos fármacos , Compostos Organosselênicos/química , Tioureia/química , Ureia/análogos & derivados , Ureia/química , Antiprotozoários/química , Humanos , Leishmania infantum/patogenicidade , Macrófagos/parasitologia , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
20.
Molecules ; 24(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487860

RESUMO

Leishmanicidal drugs have many side effects, and drug resistance to all of them has been documented. Therefore, the development of new drugs and the identification of novel therapeutic targets are urgently needed. Leishmania mexicana trypanothione reductase (LmTR), a NADPH-dependent flavoprotein oxidoreductase important to thiol metabolism, is essential for parasite viability. Its absence in the mammalian host makes this enzyme an attractive target for the development of new anti-Leishmania drugs. Herein, a tridimensional model of LmTR was constructed and the molecular docking of 20 molecules from a ZINC database was performed. Five compounds (ZINC04684558, ZINC09642432, ZINC12151998, ZINC14970552, and ZINC11841871) were selected (docking scores -10.27 kcal/mol to -5.29 kcal/mol and structurally different) and evaluated against recombinant LmTR (rLmTR) and L. mexicana promastigote. Additionally, molecular dynamics simulation of LmTR-selected compound complexes was achieved. The five selected compounds inhibited rLmTR activity in the range of 32.9% to 40.1%. The binding of selected compounds to LmTR involving different hydrogen bonds with distinct residues of the molecule monomers A and B is described. Compound ZINC12151998 (docking score -10.27 kcal/mol) inhibited 32.9% the enzyme activity (100 µM) and showed the highest leishmanicidal activity (IC50 = 58 µM) of all the selected compounds. It was more active than glucantime, and although its half-maximal cytotoxicity concentration (CC50 = 53 µM) was higher than that of the other four compounds, it was less cytotoxic than amphotericin B. Therefore, compound ZINC12151998 provides a promising starting point for a hit-to-lead process in our search for new anti-Leishmania drugs that are more potent and less cytotoxic.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Relação Dose-Resposta a Droga , Ligação de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Farmacocinética , Proteínas Recombinantes/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA