Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996869

RESUMO

NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze ß-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate ß-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue ßLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cß and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.


Assuntos
Alanina/análogos & derivados , Domínio Catalítico , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Triptofano Sintase/química , Catálise , Indóis , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Fosfato de Piridoxal/metabolismo , Triptofano Sintase/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058365

RESUMO

NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the ß-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the ß-subunit from solution.


Assuntos
Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Triptofano Sintase/química , Cristalografia por Raios X/métodos , Peso Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Multimerização Proteica
3.
Molecules ; 29(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398508

RESUMO

Tryptophan synthase (TRPS) is a complex enzyme responsible for tryptophan biosynthesis. It occurs in bacteria, plants, and fungi as an αßßα heterotetramer. Although encoded by independent genes in bacteria and plants, in fungi, TRPS is generated by a single gene that concurrently expresses the α and ß entities, which are linked by an elongated peculiar segment. We conducted 1 µs all-atom molecular dynamics simulations on Hemileia vastatrix TRPS to address two questions: (i) the role of the linker segment and (ii) the comparative mode of action. Since there is not an experimental structure, we started our simulations with homology modeling. Based on the results, it seems that TRPS makes use of an already-existing tunnel that can spontaneously move the indole moiety from the α catalytic pocket to the ß one. Such behavior was completely disrupted in the simulation without the linker. In light of these results and the αß dimer's low stability, the full-working TRPS single genes might be the result of a particular evolution. Considering the significant losses that Hemileia vastatrix causes to coffee plantations, our next course of action will be to use the TRPS to look for substances that can block tryptophan production and therefore control the disease.


Assuntos
Basidiomycota , Simulação de Dinâmica Molecular , Triptofano Sintase , Triptofano Sintase/química , Triptofano Sintase/genética , Triptofano Sintase/metabolismo , Triptofano , Fungos/metabolismo
4.
Biotechnol Bioeng ; 120(8): 2214-2229, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337917

RESUMO

Traditional psychedelics are undergoing a transformation from recreational drugs, to promising pharmaceutical drug candidates with the potential to provide an alternative treatment option for individuals struggling with mental illness. Sustainable and economic production methods are thus needed to facilitate enhanced study of these drug candidates to support future clinical efforts. Here, we expand upon current bacterial psilocybin biosynthesis by incorporating the cytochrome P450 monooxygenase, PsiH, to enable the de novo production of psilocybin as well as the biosynthesis of 13 psilocybin derivatives. The substrate promiscuity of the psilocybin biosynthesis pathway was comprehensively probed by using a library of 49 single-substituted indole derivatives, providing biophysical insights to this understudied metabolic pathway and opening the door to the in vivo biological synthesis of a library of previously unstudied pharmaceutical drug candidates.


Assuntos
Escherichia coli , Psilocibina , Humanos , Escherichia coli/genética , Sistema Enzimático do Citocromo P-450 , Preparações Farmacêuticas
5.
Appl Microbiol Biotechnol ; 107(22): 6887-6895, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713115

RESUMO

Prenyltransferases (PTs) from the dimethylallyl tryptophan synthase (DMATS) superfamily are known as efficient biocatalysts and mainly catalyze regioselective Friedel-Crafts alkylation of tryptophan and tryptophan-containing cyclodipeptides (CDPs). They can also use other unnatural aromatic compounds as substrates and play therefore a pivotal role in increasing structural diversity and biological activities of a broad range of natural and unnatural products. In recent years, several prenylated dimeric CDPs have been identified with wide range of bioactivities. In this study, we demonstrate the production of prenylated dimeric CDPs by chemoenzymatic synthesis with a known promiscuous enzyme EchPT1, which uses cyclo-L-Trp-L-Ala as natural substrate for reverse C2-prenylation. High product yields were achieved with EchPT1 for C3-N1' and C3-C3' linked dimers of cyclo-L-Trp-L-Trp. Isolation and structural elucidation confirmed the product structures to be reversely C19/C19'-mono- and diprenylated cyclo-L-Trp-L-Trp dimers. Our study provides an additional example for increasing structural diversity by prenylation of complex substrates with known biosynthetic enzymes. KEY POINTS: • Chemoenzymatic synthesis of prenylated cyclo-L-Trp-L-Trp dimers • Same prenylation pattern and position for cyclodipeptides and their dimers. • Indole prenyltransferases such as EchPT1 can be widely used as biocatalysts.

6.
Proc Natl Acad Sci U S A ; 117(1): 346-354, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871208

RESUMO

Tryptophan synthase (TS) is a heterotetrameric αßßα complex. It is characterized by the channeling of the reaction intermediate indole and the mutual activation of the α-subunit TrpA and the ß-subunit TrpB via a complex allosteric network. We have analyzed this allosteric network by means of ancestral sequence reconstruction (ASR), which is an in silico method to resurrect extinct ancestors of modern proteins. Previously, the sequences of TrpA and TrpB from the last bacterial common ancestor (LBCA) have been computed by means of ASR and characterized. LBCA-TS is similar to modern TS by forming a αßßα complex with indole channeling taking place. However, LBCA-TrpA allosterically decreases the activity of LBCA-TrpB, whereas, for example, the modern ncTrpA from Neptuniibacter caesariensis allosterically increases the activity of ncTrpB. To identify amino acid residues that are responsible for this inversion of the allosteric effect, all 6 evolutionary TrpA and TrpB intermediates that stepwise link LBCA-TS with ncTS were characterized. Remarkably, the switching from TrpB inhibition to TrpB activation by TrpA occurred between 2 successive TS intermediates. Sequence comparison of these 2 intermediates and iterative rounds of site-directed mutagenesis allowed us to identify 4 of 413 residues from TrpB that are crucial for its allosteric activation by TrpA. The effect of our mutational studies was rationalized by a community analysis based on molecular dynamics simulations. Our findings demonstrate that ancestral sequence reconstruction can efficiently identify residues contributing to allosteric signal propagation in multienzyme complexes.


Assuntos
Proteínas de Bactérias/genética , Biologia Computacional , Extinção Biológica , Subunidades Proteicas/genética , Triptofano Sintase/genética , Regulação Alostérica/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Filogenia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Triptofano/biossíntese , Triptofano Sintase/química , Triptofano Sintase/metabolismo
7.
Biosci Biotechnol Biochem ; 86(6): 792-799, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35388878

RESUMO

S-Allyl-l-cysteine (SAC) has received much interest due to its beneficial effects on human health. To satisfy the increasing demand for SAC, this study aims to develop a valuable culturing method for microbial screening synthesizing SAC from readily available materials. Although tryptophan synthase is a promising enzyme for SAC synthesis, its expression in microorganisms is strictly regulated by environmental l-tryptophan. Thus, we constructed a semisynthetic medium lacking l-tryptophan using casamino acids. This medium successfully enhanced the SAC-synthesizing activity of Lactococcus lactis ssp. cremoris NBRC 100676. In addition, microorganisms with high SAC-synthesizing activity were screened by the same medium. Food-related Klebsiella pneumoniae K-15 and Pantoea agglomerans P-3 were found to have a significantly increased SAC-synthesizing activity. The SAC-producing process established in this study is shorter in duration than the conventional garlic aging method. Furthermore, this study proposes a promising alternative strategy for producing food-grade SAC by microorganisms.


Assuntos
Cisteína , Alho , Antioxidantes/metabolismo , Cisteína/química , Alho/química , Humanos , Triptofano/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(25): 12468-12477, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31097582

RESUMO

A striking difference between genital and ocular clinical isolates of Chlamydia trachomatis is that only the former express a functional tryptophan synthase and therefore can synthesize tryptophan by indole salvage. Ocular isolates uniformly cannot use indole due to inactivating mutations within tryptophan synthase, indicating a selection against maintaining this enzyme in the ocular environment. Here, we demonstrate that this selection occurs in two steps. First, specific indole derivatives, produced by the human gut microbiome and present in serum, rapidly induce expression of C. trachomatis tryptophan synthase, even under conditions of tryptophan sufficiency. We demonstrate that these indole derivatives function by acting as de-repressors of C. trachomatis TrpR. Second, trp operon de-repression is profoundly deleterious when infected cells are in an indole-deficient environment, because in the absence of indole, tryptophan synthase deaminates serine to pyruvate and ammonia. We have used biochemical and genetic approaches to demonstrate that expression of wild-type tryptophan synthase is required for the bactericidal production of ammonia. Pertinently, although these indole derivatives de-repress the trpRBA operon of C. trachomatis strains with trpA or trpB mutations, no ammonia is produced, and no deleterious effects are observed. Our studies demonstrate that tryptophan synthase can catalyze the ammonia-generating ß-elimination reaction within any live bacterium. Our results also likely explain previous observations demonstrating that the same indole derivatives inhibit the growth of other pathogenic bacterial species, and why high serum levels of these indole derivatives are favorable for the prognosis of diseased conditions associated with bacterial dysbiosis.


Assuntos
Amônia/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/metabolismo , Olho/microbiologia , Genitália/microbiologia , Triptofano Sintase/metabolismo , Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/genética , Humanos , Triptofano/metabolismo
9.
J Biomol NMR ; 74(6-7): 341-354, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415580

RESUMO

Backbone assignments for the isolated α-subunit of Salmonella typhimurium tryptophan synthase (TS) are reported based on triple resonance solution-state NMR experiments on a uniformly 2H,13C,15N-labeled sample. From the backbone chemical shifts, secondary structure and random coil index order parameters (RCI-S2) are predicted. Titration with the 3-indole-D-glycerol 3'-phosphate analog, N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), leads to chemical shift perturbations indicative of conformational changes from which an estimate of the dissociation constant is obtained. Comparisons of the backbone chemical-shifts, RCI-S2 values, and site-specific relaxation times with and without F9 reveal allosteric changes including modulation in secondary structures and loop rigidity induced upon ligand binding. A comparison is made to the X-ray crystal structure of the α-subunit in the full TS αßßα bi-enzyme complex and to two new X-ray crystal structures of the isolated TS α-subunit reported in this work.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Salmonella typhimurium/enzimologia , Triptofano Sintase/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Soluções , Triptofano Sintase/metabolismo
10.
BMC Biotechnol ; 19(1): 49, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319821

RESUMO

BACKGROUND: S-Phenyl-L-cysteine is regarded as having potential applicability as an antiretroviral/protease inhibitor for human immunodeficiency virus (HIV). In the present study, optically active S-phenyl-L-cysteine was prepared in a highly efficient manner from inexpensive bromobenzene using tryptophan synthase through a chemoenzymatic method. RESULTS: The chemoenzymatic method used a four-step reaction sequence. The process started with the reaction of magnesium and bromobenzene, followed by a Grignard reaction, and then hydrolysis and enzymatic synthesis using tryptophan synthase. Through this approach, S-phenyl-L-cysteine was chemoenzymatically synthesized using tryptophan synthase from thiophenol and L-serine as the starting material. CONCLUSIONS: High-purity, optically active S-phenyl-L-cysteine was efficiently and inexpensively obtained in a total yield of 81.3% (> 99.9% purity).


Assuntos
Química Orgânica/métodos , Cisteína/análogos & derivados , Compostos Organometálicos/metabolismo , Triptofano Sintase/metabolismo , Bromobenzenos/química , Bromobenzenos/metabolismo , Cisteína/química , Cisteína/metabolismo , Magnésio/química , Magnésio/metabolismo , Modelos Químicos , Estrutura Molecular , Compostos Organometálicos/química , Fenóis/química , Fenóis/metabolismo , Serina/química , Serina/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Triptofano Sintase/química
11.
Arch Biochem Biophys ; 663: 297-305, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30703344

RESUMO

Mesophilic enzymes are among the most frequently used biocatalysts, however, psychrophilic enzymes are crucially important for their use in heat-sensitive reactions. How enzymes can work efficiently at various range of temperatures is an interesting subject for researchers, and yet it is very least explored. The structural and dynamical behavior of psychrophilic enzymes and their thermostability at various temperatures can help to understand the mechanism and function at molecular level, and for this purpose the ligand-free α-subunit of Shewanella frigidimarina's tryptophan synthase (Sf-TRPS) in isolated monomeric and in hetero-αß-dimeric states was subjected to molecular dynamics (MD) simulations study. The simulation sampled a complete open conformation of Loop L6 in α-subunit with and without ß-partner, which was further investigated under three temperatures mimicking psychrophilic, mesophilic and thermophilic environment. The results indicated an imperative role of ß-subunit in the dynamics of L6 loop as well as in the thermostability of α-subunit by increasing interaction strength at the αß-interface. An interesting relation was observed between the numbers of H-bonds and residue-pairs forming salt bridges at every temperature, and the combine effect seemed to regulate the balance between protein rigidity and flexibility. The outcome of the study will help to understand the driving forces that lead to the stability of the protein at different temperature, and thereby, assist in enzyme engineering that will be beneficial from industrial point of view.


Assuntos
Triptofano Sintase/metabolismo , Estabilidade Enzimática , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , Temperatura , Triptofano Sintase/química
12.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358337

RESUMO

Chlamydia pecorum is an important intracellular bacterium that causes a range of diseases in animals, including a native Australian marsupial, the koala. In humans and animals, a gamma interferon (IFN-γ)-mediated immune response is important for the control of intracellular bacteria. The present study tested the hypotheses that C. pecorum can escape IFN-γ-mediated depletion of host cell tryptophan pools. In doing so, we demonstrated that, unlike Chlamydia trachomatis, C. pecorum is completely resistant to IFN-γ in human epithelial cells. While the growth of C. pecorum was inhibited in tryptophan-deficient medium, it could be restored by the addition of kynurenine, anthranilic acid, and indole, metabolites that could be exploited by the gene products of the C. pecorum tryptophan biosynthesis operon. We also found that expression of trp genes was detectable only when C. pecorum was grown in tryptophan-free medium, with gene repression occurring in response to the addition of kynurenine, anthranilic acid, and indole. When grown in bovine kidney epithelial cells, bovine IFN-γ also failed to restrict the growth of C. pecorum, while C. trachomatis was inhibited, suggesting that C. pecorum could use the same mechanisms to evade the immune response in vivo in its natural host. Highlighting the different mechanisms triggered by IFN-γ, however, both species failed to grow in murine McCoy cells treated with murine IFN-γ. This work confirms previous hypotheses about the potential survival of C. pecorum after IFN-γ-mediated host cell tryptophan depletion and raises questions about the immune pathways used by the natural hosts of C. pecorum to control the widespread pathogen.


Assuntos
Chlamydia/imunologia , Interferon gama/metabolismo , Animais , Bovinos , Linhagem Celular , Células Cultivadas , Infecções por Chlamydia/genética , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Triptofano/metabolismo
13.
Chemistry ; 24(40): 10028-10031, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29750381

RESUMO

Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is the main alkaloid of the fungal genus Psilocybe, the so-called "magic mushrooms." The pharmaceutical interest in this psychotropic natural product as a future medication to treat depression and anxiety is strongly re-emerging. Here, we present an enhanced enzymatic route of psilocybin production by adding TrpB, the tryptophan synthase of the mushroom Psilocybe cubensis, to the reaction. We capitalized on its substrate flexibility and show psilocybin formation from 4-hydroxyindole and l-serine, which are less cost-intensive substrates, compared to the previous method. Furthermore, we show enzymatic production of 7-phosphoryloxytryptamine (isonorbaeocystin), a non-natural congener of the Psilocybe alkaloid norbaeocystin (4-phosphoryloxytryptamine), and of serotonin (5-hydroxytryptamine) by means of the same in vitro approach.

14.
Biochim Biophys Acta ; 1864(3): 268-279, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708480

RESUMO

Four new X-ray structures of tryptophan synthase (TS) crystallized with varying numbers of the amphipathic N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) molecule are presented. These structures show one of the F6 ligands threaded into the tunnel from the ß-site and reveal a distinct hydrophobic region. Over this expanse, the interactions between F6 and the tunnel are primarily nonpolar, while the F6 phosphoryl group fits into a polar pocket of the ß-subunit active site. Further examination of TS structures reveals that one portion of the tunnel (T1) binds clusters of water molecules, whereas waters are not observed in the nonpolar F6 binding region of the tunnel (T2). MD simulation of another TS structure with an unobstructed tunnel also indicates the T2 region of the tunnel excludes water, consistent with a dewetted state that presents a significant barrier to the transfer of water into the closed ß-site. We conclude that hydrophobic molecules can freely diffuse between the α- and ß-sites via the tunnel, while water does not. We propose that exclusion of water serves to inhibit reaction of water with the α-aminoacrylate intermediate to form ammonium ion and pyruvate, a deleterious side reaction in the αß-catalytic cycle. Finally, while most TS structures show ßPhe280 partially blocking the tunnel between the α- and ß-sites, new structures show an open tunnel, suggesting the flexibility of the ßPhe280 side chain. Flexible docking studies and MD simulations confirm that the dynamic behavior of ßPhe280 allows unhindered transfer of indole through the tunnel, therefore excluding a gating role for this residue.


Assuntos
Indóis/química , Conformação Proteica , Triptofano Sintase/química , Água/química , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nanoporos , Salmonella typhimurium/enzimologia , Especificidade por Substrato
15.
Chembiochem ; 18(4): 382-386, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28005309

RESUMO

ß-Methyltryptophans (ß-mTrp) are precursors in the biosynthesis of bioactive natural products and are used in the synthesis of peptidomimetic-based therapeutics. Currently ß-mTrp is produced by inefficient multistep synthetic methods. Here we demonstrate how an engineered variant of tryptophan synthase from Salmonella (StTrpS) can catalyse the efficient condensation of l-threonine and various indoles to generate ß-mTrp and derivatives in a single step. Although l-serine is the natural substrate for TrpS, targeted mutagenesis of the StTrpS active site provided a variant (ßL166V) that can better accommodate l-Thr as a substrate. The condensation of l-Thr and indole proceeds with retention of configuration at both α- and ß-positions to give (2S,3S)-ß-mTrp. The integration of StTrpS (ßL166V) with l-amino acid oxidase, halogenase enzymes and palladium chemocatalysts provides access to further d-configured and regioselectively halogenated or arylated ß-mTrp derivatives.


Assuntos
Engenharia de Proteínas , Triptofano Sintase/síntese química , Triptofano Sintase/metabolismo , Triptofano/metabolismo , Estrutura Molecular , Mutação , Peptidomiméticos , Salmonella/enzimologia , Salmonella/genética , Triptofano/química , Triptofano Sintase/química , Triptofano Sintase/genética
16.
J Biol Chem ; 290(3): 1364-73, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25477507

RESUMO

The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C(4)- and C(7)-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C(3)-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis.


Assuntos
Alquil e Aril Transferases/química , Aspergillus fumigatus/enzimologia , Triptofano Sintase/química , Tirosina/química , Catálise , Cromatografia Líquida de Alta Pressão , Proteínas Fúngicas/química , Hemiterpenos/química , Indóis/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Compostos Organofosforados/química , Plasmídeos/metabolismo , Prenilação , Engenharia de Proteínas/métodos , Triptofano/química
17.
Biochim Biophys Acta ; 1854(9): 1194-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25688830

RESUMO

The proposed mechanism for tryptophan synthase shows ßLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4' for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-¹5N-lysine TS was prepared to access the protonation state of ßLys87 using ¹5N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the ß-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Guest Editors: Andrea Mozzarelli and Loredano Pollegioni.


Assuntos
Biocatálise , Salmonella typhimurium/enzimologia , Triptofano Sintase/química , Sítios de Ligação , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Triptofano Sintase/metabolismo
18.
BMC Microbiol ; 16(1): 286, 2016 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-27914477

RESUMO

BACKGROUND: The natural course of sexually transmitted infections caused by Chlamydia trachomatis varies between individuals. In addition to parasite and host effects, the vaginal microbiota might play a key role in the outcome of C. trachomatis infections. Interferon-gamma (IFN-γ), known for its anti-chlamydial properties, activates the expression of indoleamine 2,3-dioxygenase (IDO1) in epithelial cells, an enzyme that catabolizes the amino acid L- tryptophan into N-formylkynurenine, depleting the host cell's pool of tryptophan. Although C. trachomatis is a tryptophan auxotroph, urogenital strains (but not ocular strains) have been shown in vitro to have the ability to produce tryptophan from indole using the tryptophan synthase (trpBA) gene. It has been suggested that indole producing bacteria from the vaginal microbiota could influence the outcome of Chlamydia infection. RESULTS: We used two in vitro models (treatment with IFN-γ or direct limitation of tryptophan), to study the effects of direct rescue by the addition of exogenous indole, or by the addition of culture supernatant from indole-positive versus indole-negative Prevotella strains, on the growth and infectivity of C. trachomatis. We found that only supernatants from the indole-positive strains, P. intermedia and P. nigrescens, were able to rescue tryptophan-starved C. trachomatis. In addition, we analyzed vaginal secretion samples to determine physiological indole concentrations. In spite of the complexity of vaginal secretions, we demonstrated that for some vaginal specimens with higher indole levels, there was a link to higher recovery of the Chlamydia under tryptophan-starved conditions, lending preliminary support to the critical role of the IFN-γ-tryptophan-indole axis in vivo. CONCLUSIONS: Our data provide evidence for the ability of both exogenous indole as well as supernatant from indole producing bacteria such as Prevotella, to rescue genital C. trachomatis from tryptophan starvation. This adds weight to the hypothesis that the vaginal microbiota (particularly from women with lower levels of lactobacilli and higher levels of indole producing anaerobes) may be intrinsically linked to the outcome of chlamydial infections in some women.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/metabolismo , Indóis/metabolismo , Interferon gama/deficiência , Prevotella/metabolismo , Triptofano/deficiência , Doenças Vaginais/microbiologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Células HeLa , Células Hep G2 , Humanos , Técnicas In Vitro , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/imunologia , Cinurenina/análogos & derivados , Cinurenina/metabolismo , Microbiota , Prevotella/imunologia , Prevotella/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triptofano/imunologia , Triptofano Sintase/genética , Triptofano Sintase/metabolismo , Doenças Vaginais/imunologia , Doenças Vaginais/metabolismo
19.
Microb Cell Fact ; 15(1): 180, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769259

RESUMO

BACKGROUND: Engineering of single-species biofilms for enzymatic generation of fine chemicals is attractive. We have recently demonstrated the utility of an engineered Escherichia coli biofilm as a platform for synthesis of 5-halotryptophan. E. coli PHL644, expressing a recombinant tryptophan synthase, was employed to generate a biofilm. Its rapid deposition, and instigation of biofilm formation, was enforced by employing a spin-down method. The biofilm presents a large three-dimensional surface area, excellent for biocatalysis. The catalytic longevity of the engineered biofilm is striking, and we had postulated that this was likely to largely result from protection conferred to recombinant enzymes by biofilm's extracellular matrix. SILAC (stable isotopic labelled amino acids in cell cultures), and in particular dynamic SILAC, in which pulses of different isotopically labelled amino acids are administered to cells over a time course, has been used to follow the fate of proteins. To explore within our spin coated biofilm, whether the recombinant enzyme's longevity might be in part due to its regeneration, we introduced pulses of isotopically labelled lysine and phenylalanine into medium overlaying the biofilm and followed their incorporation over the course of biofilm development. RESULTS: Through SILAC analysis, we reveal that constant and complete regeneration of recombinant enzymes occurs within spin coated biofilms. The striking catalytic longevity within the biofilm results from more than just simple protection of active enzyme by the biofilm and its associated extracellular matrix. The replenishment of recombinant enzyme is likely to contribute significantly to the catalytic longevity observed for the engineered biofilm system. CONCLUSIONS: Here we provide the first evidence of a recombinant enzyme's regeneration in an engineered biofilm. The recombinant enzyme was constantly replenished over time as evidenced by dynamic SILAC, which suggests that the engineered E. coli biofilms are highly metabolically active, having a not inconsiderable energetic demand. The constant renewal of recombinant enzyme highlights the attractive possibility of utilising this biofilm system as a dynamic platform into which enzymes of interest can be introduced in a "plug-and-play" fashion and potentially be controlled through promoter switching for production of a series of desired fine chemicals.


Assuntos
Biofilmes , Enzimas/metabolismo , Engenharia Genética/métodos , Biocatálise , Catálise , Cromatografia Líquida , Enzimas/biossíntese , Enzimas/genética , Espectrometria de Massas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Appl Microbiol Biotechnol ; 100(20): 8789-807, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27368741

RESUMO

Several transformation strains of Coprinopsis cinerea carry the defective tryptophan synthase allele trp1-1,1-6 which can be complemented by introduction of the trp1 (+) wild-type gene. Regularly in C. cinerea, single-trp1 (+)-vector transformations yield about half the numbers of clones than cotransformations with a non-trp1 (+)-plasmid done in parallel. The effect is also observed with the orthologous Schizophyllum commune trpB (+) gene shown here to function as a selection marker in C. cinerea. Parts of single-trp1 (+) - or single-trpB (+) -vector transformants are apparently lost. This paradoxical phenomenon relates to de-regulation of aromatic amino acid biosynthesis pathways. Adding tryptophan precursors to protoplast regeneration agar or feeding with other aromatic amino acids increases loss of single-trp1 (+)-vector transformants and also sets off loss of clones in cotransformation with a non-trp1 (+)-plasmid. Feedback control by tryptophan and cross-pathway control by tyrosine and phenylalanine are both active in the process. We deduce from the observations that more cotransformants than single-vector transformants are obtained by in average less disturbance of the tryptophan biosynthesis pathway. DNA in C. cinerea transformation usually integrates into the genome at multiple ectopic places. Integration events for a single vector per nucleus should statistically be 2-fold higher in single-vector transformations than in cotransformations in which the two different molecules compete for the same potential integration sites. Integration of more trp1 (+) copies into the genome might more likely lead to sudden tryptophan overproduction with subsequent rigid shut-down of the pathway. Blocking ectopic DNA integration in a Δku70 mutant abolished the effect of doubling clone numbers in cotransformations due to preferred single trp1 (+) integration by homologous recombination at its native genomic site.


Assuntos
Agaricales/enzimologia , Agaricales/metabolismo , Transformação Genética , Triptofano Sintase/genética , Triptofano Sintase/metabolismo , Agaricales/genética , Teste de Complementação Genética , Recombinação Homóloga , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA