Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Genes Dev ; 33(11-12): 591-609, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31160393

RESUMO

Glioblastoma ranks among the most lethal of all human cancers. Glioblastomas display striking cellular heterogeneity, with stem-like glioblastoma stem cells (GSCs) at the apex. Although the original identification of GSCs dates back more than a decade, the purification and characterization of GSCs remains challenging. Despite these challenges, the evidence that GSCs play important roles in tumor growth and response to therapy has grown. Like normal stem cells, GSCs are functionally defined and distinguished from their differentiated tumor progeny at core transcriptional, epigenetic, and metabolic regulatory levels, suggesting that no single therapeutic modality will be universally effective against a heterogenous GSC population. Glioblastomas induce a systemic immunosuppression with mixed responses to oncoimmunologic modalities, suggesting the potential for augmentation of response with a deeper consideration of GSCs. Unfortunately, the GSC literature has been complicated by frequent use of inferior cell lines and a lack of proper functional analyses. Collectively, glioblastoma offers a reliable cancer to study cancer stem cells to better model the human disease and inform improved biologic understanding and design of novel therapeutics.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Células-Tronco Neoplásicas/fisiologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Diferenciação Celular , Epigênese Genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Microambiente Tumoral
2.
Genes Dev ; 31(3): 247-259, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28223311

RESUMO

Tumor infiltrated type II (M2) macrophages promote tumorigenesis by suppressing immune clearance, promoting proliferation, and stimulating angiogenesis. Interestingly, macrophages were also found to enrich in small foci of altered hepatocytes containing liver tumor-initiating cells (TICs). However, whether and how TICs specifically recruit macrophages and the function of these macrophages in tumor initiation remain unknown due to technical difficulties. In this study, by generating genetically defined liver TICs, we demonstrate that TICs actively recruit M2 macrophages from as early as the single-cell stage. Elimination of TIC-associated macrophages (TICAMs) abolishes tumorigenesis in a manner dependent on the immune system. Mechanistically, activation of the Hippo pathway effector Yes-associated protein (YAP) underlies macrophage recruitment by TICs. These results demonstrate for the first time that macrophages play a decisive role in the survival of single TICs in vivo and provide a proof of principle for TIC elimination by targeting YAP or M2 macrophages.


Assuntos
Carcinoma Hepatocelular/imunologia , Transformação Celular Neoplásica/imunologia , Hepatócitos/imunologia , Neoplasias Hepáticas/imunologia , Macrófagos/imunologia , Células-Tronco Neoplásicas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Comunicação Celular/imunologia , Proteínas de Ciclo Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Fator de Crescimento de Hepatócito/fisiologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Proteínas de Homeodomínio/fisiologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Células-Tronco Neoplásicas/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Serina-Treonina Quinase 3 , Proteína Supressora de Tumor p53/fisiologia , Proteínas de Sinalização YAP
3.
Genes Dev ; 31(3): 223-225, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270513

RESUMO

Macrophages play an important role in tumor promotion, usually acting as facilitators of cancer initiation and progression. However, it is not clear how macrophages impact early phases of tumorigenesis. Using genetically modified mouse models, Guo et al. (pp. 247-259) demonstrated that tumor-initiating cells with an activated Hippo pathway are able to recruit macrophages starting from the very early phases of cancer development, mainly through direct activation of genes encoding macrophage chemoattractants and survival factors. The recruited macrophages were of vital importance for protection of tumor-initiating cells against eradication by lymphocyte-mediated immune surveillance. Such a tight link between macrophages and a pathway controlling organ development and size may reflect the normal role of these cells in tissue morphogenesis.


Assuntos
Macrófagos , Transdução de Sinais , Animais , Carcinogênese , Neoplasias , Oncogenes , Proteínas Serina-Treonina Quinases
4.
J Mammary Gland Biol Neoplasia ; 28(1): 2, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36808257

RESUMO

Determination of the mammary epithelial cell that serves as the cell of origin for breast cancer is key to understand tumor heterogeneity and clinical management. In this study, we aimed to decipher whether Rank expression in the presence of PyMT and Neu oncogenes might affect the cell of origin of mammary gland tumors. We observed that Rank expression in PyMT+/- and Neu+/- mammary glands alters the basal and luminal mammary cell populations already in preneoplasic tissue, which may interfere with the tumor cell of origin restricting their tumorigenesis ability upon transplantation assays. In spite of this, Rank expression eventually promotes tumor aggressiveness once tumorigenesis is established.


Assuntos
Expressão Ectópica do Gene , Neoplasias Mamárias Experimentais , Animais , Humanos , Camundongos , Neoplasias Mamárias Experimentais/patologia , Carcinogênese/patologia , Células Epiteliais/metabolismo , Oncogenes , Camundongos Transgênicos
5.
Genes Dev ; 29(12): 1203-17, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26109046

RESUMO

Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/terapia , Humanos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo
6.
Cancer Control ; 29: 10732748221078160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213254

RESUMO

The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC's epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related "epigenetic abnormalities" in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC's migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Biologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Epigênese Genética , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897656

RESUMO

Cancer stem cells (CSCs) are in general characterized by higher resistance to cell death and cancer therapies than non-stem differentiated cancer cells. However, we and others have recently revealed using glioma stem cells (GSCs) as a model that, unexpectedly, CSCs have specific vulnerabilities that make them more sensitive to certain drugs compared with their differentiated counterparts. We aimed in this study to discover novel drugs targeting such Achilles' heels of GSCs as anti-GSC drug candidates to be used for the treatment of glioblastoma, the most therapy-resistant form of brain tumors. Here we report that domatinostat (4SC-202), a class I HDAC inhibitor, is one such candidate. At concentrations where it showed no or minimal growth inhibitory effect on differentiated GSCs and normal cells, domatinostat effectively inhibited the growth of GSCs mainly by inducing apoptosis. Furthermore, GSCs that survived domatinostat treatment lost their self-renewal capacity. These results suggested that domatinostat is a unique drug that selectively eliminates GSCs not only physically by inducing cell death but also functionally by inhibiting their self-renewal. Our findings also imply that class I HDACs and/or LSD1, another target of domatinostat, may possibly have a specific role in the maintenance of GSCs and therefore could be an attractive target in the development of anti-GSC therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Benzamidas , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioma/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Células-Tronco Neoplásicas/metabolismo
8.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955917

RESUMO

Glioma stem cells (GSCs), the cancer stem cells of glioblastoma multiforme (GBM), contribute to the malignancy of GBM due to their resistance to therapy and tumorigenic potential; therefore, the development of GSC-targeted therapies is urgently needed to improve the poor prognosis of GBM patients. The molecular mechanisms maintaining GSCs need to be elucidated in more detail for the development of GSC-targeted therapy. In comparison with patient-derived GSCs and their differentiated counterparts, we herein demonstrated for the first time that phospholipase C (PLC)ε was highly expressed in GSCs, in contrast to other PLC isoforms. A broad-spectrum PLC inhibitor suppressed the viability of GSCs, but not their stemness. Nevertheless, the knockdown of PLCε suppressed the survival of GSCs and induced cell death. The stem cell capacity of residual viable cells was also suppressed. Moreover, the survival of mice that were transplanted with PLCε knockdown-GSCs was longer than the control group. PLCε maintained the stemness of GSCs via the activation of JNK. The present study demonstrated for the first time that PLCε plays a critical role in maintaining the survival, stemness, and tumor initiation capacity of GSCs. Our study suggested that PLCε is a promising anti-GSC therapeutic target.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Fosfoinositídeo Fosfolipase C , Fosfolipases Tipo C/metabolismo
9.
Biochim Biophys Acta Rev Cancer ; 1869(2): 175-188, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378228

RESUMO

De-regulated cellular energetics is an emerging hallmark of cancer with alterations to glycolysis, oxidative phosphorylation, the pentose phosphate pathway, lipid oxidation and synthesis and amino acid metabolism. Understanding and targeting of metabolic reprogramming in cancers may yield new treatment options, but metabolic heterogeneity and plasticity complicate this strategy. One highly heterogeneous cancer for which current treatments ultimately fail is the deadly brain tumor glioblastoma. Therapeutic resistance, within glioblastoma and other solid tumors, is thought to be linked to subsets of tumor initiating cells, also known as cancer stem cells. Recent profiling of glioblastoma and brain tumor initiating cells reveals changes in metabolism, as compiled here, that may be more broadly applicable. We will summarize the profound role for metabolism in tumor progression and therapeutic resistance and discuss current approaches to target glioma metabolism to improve standard of care.


Assuntos
Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Aminoácidos/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
10.
Int J Mol Sci ; 22(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916548

RESUMO

Recent advances in our understanding of breast cancer have demonstrated that cancer stem-like cells (CSCs, also known as tumor-initiating cell (TICs)) are central for progression and recurrence. CSCs are a small subpopulation of cells present in breast tumors that contribute to growth, metastasis, therapy resistance, and recurrence, leading to poor clinical outcome. Data have shown that cancer cells can gain characteristics of CSCs, or stemness, through alterations in key signaling pathways. The dysregulation of miRNA expression and signaling have been well-documented in cancer, and recent studies have shown that miRNAs are associated with breast cancer initiation, progression, and recurrence through regulating CSC characteristics. More specifically, miRNAs directly target central signaling nodes within pathways that can drive the formation, maintenance, and even inhibition of the CSC population. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as biomarkers and promising clinical therapeutics, and presents a comprehensive summary of currently validated targets involved in CSC-specific signaling pathways in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , MicroRNAs/biossíntese , Células-Tronco Neoplásicas/metabolismo , RNA Neoplásico/biossíntese , Transdução de Sinais , Neoplasias da Mama/patologia , Feminino , Humanos , Células-Tronco Neoplásicas/patologia
11.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445194

RESUMO

Uterine leiomyomas represent the most common benign gynecologic tumor. These hormone-dependent smooth-muscle formations occur with an estimated prevalence of ~70% among women of reproductive age and cause symptoms including pain, abnormal uterine bleeding, infertility, and recurrent abortion. Despite the prevalence and public health impact of uterine leiomyomas, available treatments remain limited. Among the potential causes of leiomyomas, early hormonal exposure during periods of development may result in developmental reprogramming via epigenetic changes that persist in adulthood, leading to disease onset or progression. Recent developments in unbiased high-throughput sequencing technology enable powerful approaches to detect driver mutations, yielding new insights into the genomic instability of leiomyomas. Current data also suggest that each leiomyoma originates from the clonal expansion of a single transformed somatic stem cell of the myometrium. In this review, we propose an integrated cellular and molecular view of the origins of leiomyomas, as well as paradigm-shifting studies that will lead to better understanding and the future development of non-surgical treatments for these highly frequent tumors.


Assuntos
Leiomioma/patologia , Neoplasias Uterinas/patologia , Útero/patologia , Animais , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Leiomioma/etiologia , Leiomioma/genética , Mutação , Neoplasias Uterinas/etiologia , Neoplasias Uterinas/genética , Útero/metabolismo
12.
Chin J Cancer Res ; 33(6): 694-707, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35125813

RESUMO

OBJECTIVE: Local recurrence of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA) treatment remains a serious problem. Tumor-initiating cells (TICs) are thought to be responsible for tumor relapse. Here, we investigated the effect of the TIC differentiation inducer, all-trans retinoic acid (ATRA), on RFA and explored the potential molecular mechanisms. METHODS: The proportions of CD133+ and epithelial cell adhesion molecule (EpCAM)+ TICs in recurrent HCC after RFA and primary HCC were first determined in clinic. Then, the effect of heat intervention or insufficient RFA (IRFA) on the malignant potential of HCC cells, including cell migration, sphere formation ability, tumor growth, the proportion of CD133+ and EpCAM+ TICs and expression of stem cell-related genes, was evaluated in vitro andin vivo. Finally, the effect of ATRA on the tumor growth and the proportion of TICs was evaluated. RESULTS: In clinical data, a higher proportion of CD133+ and EpCAM+ TICs was found in recurrent tumors than in primary tumors. In vitro heat intervention promoted the cell migration and sphere formation ability. Additionally, it increased the proportion of CD133+ and EpCAM+ TICs and the expression of stem cell-related genes. In addition, after IRFA the residual tumors in xenografts grew faster and had more TICs than untreated tumors. ATRA remarkably inhibited residual tumor growth after IRFA by elimination of TICs though the PI3K/AKT pathway. Combination treatment with ATRA resulted in longer survival outcomes in mouse xenografts than RFA alone. CONCLUSIONS: ATRA, as a TIC differentiation inducer, could help to improve the effect of RFA treatment, which was partially attributed to its effect against TICs. The data indicated its potential as an alternative drug in the development of better therapeutic strategies for use in combination with RFA.

13.
Stem Cells ; 37(4): 453-462, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629778

RESUMO

Tumorigenic and non-neoplastic tissue injury occurs via the ischemic microenvironment defined by low oxygen, pH, and nutrients due to blood supply malfunction. Ischemic conditions exist within regions of pseudopalisading necrosis, a pathological hallmark of glioblastoma (GBM), the most common primary malignant brain tumor in adults. To recapitulate the physiologic microenvironment found in GBM tumors and tissue injury, we developed an in vitro ischemic model and identified chromodomain helicase DNA-binding protein 7 (CHD7) as a novel ischemia-regulated gene. Point mutations in the CHD7 gene are causal in CHARGE syndrome (a developmental disorder causing coloboma, heart defects, atresia choanae, retardation of growth, and genital and ear anomalies) and interrupt the epigenetic functions of CHD7 in regulating neural stem cell maintenance and development. Using our ischemic system, we observed microenvironment-mediated decreases in CHD7 expression in brain tumor-initiating cells and neural stem cells. Validating our approach, CHD7 was suppressed in the perinecrotic niche of GBM patient and xenograft sections, and an interrogation of patient gene expression datasets determined correlations of low CHD7 with increasing glioma grade and worse patient outcomes. Segregation of GBM by molecular subtype revealed a novel observation that CHD7 expression is elevated in proneural versus mesenchymal GBM. Genetic targeting of CHD7 and subsequent gene ontology analysis of RNA sequencing data indicated angiogenesis as a primary biological function affected by CHD7 expression changes. We validated this finding in tube-formation assays and vessel formation in orthotopic GBM models. Together, our data provide further understanding of molecular responses to ischemia and a novel function of CHD7 in regulating angiogenesis in both neoplastic and non-neoplastic systems. Stem Cells 2019;37:453-462.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Modelos Animais de Doenças , Glioblastoma , Humanos , Camundongos , Transfecção , Microambiente Tumoral
14.
Stem Cells ; 33(4): 1063-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588661

RESUMO

The Hedgehog (Hh) signaling pathway has been implicated in acquired chemoresistance. However, it remains unclear whether and how the Hh pathway may maintain the chemoresistant phenotype by controlling the tumor-initiating cell-like properties of acquired chemoresistant cancer cells. In this study, using well-established acquired chemoresistant cancer cells and chemosensitive KB cancer cells with artificially elevated Hh pathway activity, we found that Hh pathway activity may transcriptionally control the expression of twist1 and snail, thereby maintaining the tumor-initiating cell-like properties and consequently the chemoresistant phenotype. Meanwhile, we obtained direct evidence that twist1, which may amplify Hh signaling activity and plays an essential role in limb development, is a direct transcriptional target of Gli, similar to snail. We further observed that the expression of ATP-binding cassette (ABC) transporters was dispensable for the chemoresistance mediated by twist1 and snail. Collectively, these findings demonstrate that twist1, together with snail, links the Hh pathway to the tumor-initiating cell-like properties of chemoresistant cells. This consequently promotes chemoresistance independently of ABC transporters, thereby contributing to future development of strategies for combating chemoresistance through Hh pathway interference. Furthermore, our finding that twist1 is a direct target of the transcription factor Gli improves the interpretation of the association between twist1 and the Hh pathway and the nature of the signaling transduction of the Hh pathway.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas Hedgehog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/biossíntese , Fatores de Transcrição/biossíntese , Proteína 1 Relacionada a Twist/biossíntese , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células NIH 3T3 , Células-Tronco Neoplásicas/efeitos dos fármacos , Fatores de Transcrição da Família Snail , Vincristina/farmacologia
15.
Hepatol Res ; 46(1): 50-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26123821

RESUMO

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology.

16.
Stem Cells ; 32(5): 1124-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24458840

RESUMO

We discovered that glioblastoma (GBM) cells use Cool-1/ß-pix to inhibit normal activation of the c-Cbl ubiquitin ligase via the redox/Fyn/c-Cbl pathway and that c-Cbl inhibition is critical for GBM cell function. Restoring normal c-Cbl activity by Cool-1 knockdown in vitro reduced GBM cell division, almost eliminated generation of adhesion-independent spheroids, reduced the representation of cells expressing antigens thought to identify tumor initiating cells (TICs), reduced levels of several proteins of critical importance in TIC function (such as Notch-1 and Sox2), and increased sensitivity to BCNU (carmustine) and temozolomide (TMZ). In vivo, Cool-1 knockdown greatly suppressed the ability of GBM cells to generate tumors, an outcome that was c-Cbl dependent. In contrast, Cool-1 knockdown did not reduce division or increase BCNU or TMZ sensitivity in primary glial progenitor cells and Cool-1/c-Cbl complexes were not found in normal brain tissue. Our studies provide the first evidence that Cool-1 may be critical in the biology of human tumors, that suppression of c-Cbl by Cool-1 may be critical for generation of at least a subset of GBMs and offer a novel target that appears to be selectively necessary for TIC function and modulates chemoresistance in GBM cells. Targeting such proteins that inhibit c-Cbl offers potentially attractive opportunities for therapeutic development.


Assuntos
Proliferação de Células , Glioblastoma/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Western Blotting , Carmustina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Citometria de Fluxo , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Interferência de RNA , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esferoides Celulares/metabolismo , Temozolomida , Transplante Heterólogo , Carga Tumoral/genética , Células Tumorais Cultivadas
17.
Exp Cell Res ; 328(1): 44-57, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172556

RESUMO

An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-LFFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs.


Assuntos
Transformação Celular Neoplásica/metabolismo , Glicólise , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Animais , Apoptose , Western Blotting , Proliferação de Células , Transformação Celular Neoplásica/patologia , Progressão da Doença , Feminino , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/genética , Consumo de Oxigênio , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
18.
Stem Cells ; 31(7): 1266-77, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592496

RESUMO

Brain tumors represent the leading cause of childhood cancer mortality, of which medulloblastoma (MB) is the most frequent malignant tumor. Recent studies have demonstrated the presence of several MB molecular subgroups, each distinct in terms of prognosis and predicted therapeutic response. Groups 1 and 2 are characterized by relatively good clinical outcomes and activation of the Wnt and Shh pathways, respectively. In contrast, groups 3 and 4 ("non-Shh/Wnt MBs") are distinguished by metastatic disease, poor patient outcome, and lack a molecular pathway phenotype. Current gene expression platforms have not detected brain tumor-initiating cell (BTIC) self-renewal genes in groups 3 and 4 MBs as BTICs typically comprise a minority of tumor cells and may therefore go undetected on bulk tumor analyses. Since increasing BTIC frequency has been associated with increasing tumor aggressiveness and poor patient outcome, we investigated the subgroup-specific gene expression profile of candidate stem cell genes within 251 primary human MBs from four nonoverlapping MB transcriptional databases (Amsterdam, Memphis, Toronto, Boston) and 74 NanoString-subgrouped MBs (Vancouver). We assessed the functional relevance of two genes, FoxG1 and Bmi1, which were significantly enriched in non-Shh/Wnt MBs and showed these genes to mediate MB stem cell self-renewal and tumor initiation in mice. We also identified their transcriptional regulation through reciprocal promoter occupancy in CD15+ MB stem cells. Our work demonstrates the application of stem cell data gathered from genomic platforms to guide functional BTIC assays, which may then be used to develop novel BTIC self-renewal mechanisms amenable to therapeutic targeting.


Assuntos
Neoplasias Cerebelares/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Meduloblastoma/metabolismo , Células-Tronco Neoplásicas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Fatores de Transcrição Forkhead/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Complexo Repressor Polycomb 1/genética , Prognóstico , Regiões Promotoras Genéticas , Transdução de Sinais , Transcriptoma
19.
Neurosurg Focus ; 37(6): E11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25434380

RESUMO

There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Variação Genética/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos
20.
J Hepatol ; 59(6): 1255-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23867314

RESUMO

BACKGROUND & AIMS: Systemic chemotherapy serves as an adjuvant treatment for post-operation patients with hepatocellular carcinoma (HCC), and provides curative option for the patients with unresectable HCC. However, its efficiency is largely limited because of the high incidence of chemo-resistance. Increasing evidence has shown that tumor initiating cells (TICs) not only have the ability to self-renew and drive the initiation and progression of cancer, but also exhibit greater resistance to conventional chemo- and radio-therapies than non-TICs. It was the aim of this study to investigate the effects of ATRA with and without cisplatin on TIC differentiation and apoptosis in human HCC. METHODS: In the present study, we evaluated the TICs of HCC cell differentiation induced by all-trans retinoic acid (ATRA), and developed a novel chemotherapeutic approach to HCC, by characterizing the function of combinatorial treatment with cis-diammineplatinum(II) (cisplatin) and ATRA in vitro and in vivo. RESULTS: ATRA effectively induced differentiation of TICs, which potentiated the cytotoxic effects of cisplatin. The combinatorial treatment of ATRA acid and cisplatin reduced protein kinase B (AKT) (Thr308) phosphorylation, and promoted apoptosis of HCC cells more significantly than treatment with cisplatin alone. In addition, the combined treatment with the two drugs exerted stronger inhibition on either HCC cell migration in vitro or metastasis in vivo, when compared to the treatment with either drug alone. CONCLUSIONS: These results indicated that ATRA could significantly improve the effect of cisplatin, which is at least partially attributed to ATRA-induced differentiation of HCC TICs, and the subsequent decrease in this chemo-resistant subpopulation.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Antígenos de Neoplasias/fisiologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Moléculas de Adesão Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Sinergismo Farmacológico , Molécula de Adesão da Célula Epitelial , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Células-Tronco Neoplásicas/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA