RESUMO
(1) Background: Colorectal cancer (CRC) is a common gastrointestinal malignancy, accounting for the second largest gastrointestinal tumor. MORC2, a newly discovered chromatin remodeling protein, plays an important role in the biological processes of various cancers. However, the potential mechanistic role of MORC2 in promoting proliferation of CRC carcinoma remains unclear. (2) Methods: The Cancer Genome Atlas database was analyzed using bioinformatics to obtain gene expression and clinical prognosis data. The cell proliferation was assessed by CCK8 and EdU assays, as well as xenograft. SA-beta-gal staining, Western blot, and ELISA assay were using to assess the cell senescence and potential mechanism. (3) Results: Our data showed that MORC2 expression was elevated in CRC patients. Depletion of MORC2 inhibited cellular proliferation both in vivo and in vitro. Further studies showed that the depletion of MORC2 enhanced p21 and p53 expression through decreasing HDAC4 and increasing pro-inflammatory factors IL-6 and IL-8, thus, promoting cellular senescence. (4) Conclusions: We concluded that increased MORC2 expression in CRC might play a critical role in tumorigenesis by regulating the cellular senescence, in addition, MORC2 could be a novel biomarker for clinical outcomes and prognosis and a treatment target for CRC.
Assuntos
Interleucina-6 , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Proliferação de Células/genética , Senescência Celular/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
tRNA-derived small RNAs (tRFs), a kind of noncoding RNAs, are generated from transfer RNAs. tRFs have some types according to their source and sizes. They play important roles in cell life and carcinogenesis. In this paper, we review the biogenesis and biological properties. We also focus on current progress of tRFs and some tsRNAs such as tRF-Leu-CAG, which have been studied or will be further investigated in tumorgenesis and diagnostic biomarkers in the clinic.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia , Precursores de RNA/genética , RNA de Transferência/genética , Humanos , Neoplasias/metabolismo , Precursores de RNA/metabolismo , RNA de Transferência/metabolismoRESUMO
BACKGROUND: MicroRNAs (miRNAs) are important regulators involved in diverse physiological and pathological processes including cancer. SUMO (small ubiquitin-like modifier) is a reversible protein modifier. We recently found that SUMOylation of TARBP2 and DGCR8 is involved in the regulation of the miRNA pathway. KHSRP is a single stranded nucleic acid binding protein with roles in transcription and mRNA decay, and it is also a component of the Drosha-DGCR8 complex promoting the miRNA biogenesis. METHODS: The in vivo SUMOylation assay using the Ni2+-NTA affinity pulldown or immunoprecipitation (IP) and the in vitro E.coli-based SUMOylation assay were used to analyze SUMOylation of KHSRP. Nuclear/Cytosol fractionation assay and immunofluorescent staining were used to observe the localization of KHSRP. High-throughput miRNA sequencing, quantantive RT-PCR and RNA immunoprecipitation assay (RIP) were employed to determine the effects of KHSRP SUMO1 modification on the miRNA biogenesis. The soft-agar colony formation, migration, vasculogenic mimicry (VM) and three-dimensional (3D) cell culture assays were performed to detect the phenotypes of tumor cells in vitro, and the xenograft tumor model in mice was conducted to verify that SUMO1 modification of KHSRP regulated tumorigenesis in vivo. RESULTS: KHSRP is modified by SUMO1 at the major site K87, and this modification can be increased upon the microenvironmental hypoxia while reduced by the treatment with growth factors. SUMO1 modification of KHSRP inhibits its interaction with the pri-miRNA/Drosha-DGCR8 complex and probably increases its translocation from the nucleus to the cytoplasm. Consequently, SUMO1 modification of KHSRP impairs the processing step of pre-miRNAs from pri-miRNAs which especially harbor short G-rich stretches in their terminal loops (TL), resulting in the downregulation of a subset of TL-G-Rich miRNAs such as let-7 family and consequential tumorigenesis. CONCLUSIONS: Our data demonstrate how the miRNA biogenesis pathway is connected to tumorigenesis and cancer progression through the reversible SUMO1 modification of KHSRP.
Assuntos
Carcinogênese/genética , Carcinogênese/metabolismo , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Proteína SUMO-1/metabolismo , Transativadores/metabolismo , Composição de Bases , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Peróxido de Hidrogênio/metabolismo , Hipóxia/metabolismo , Lisina/metabolismo , MicroRNAs/química , Modelos Biológicos , Conformação de Ácido Nucleico , Ligação Proteica , Transporte Proteico , Sumoilação , Sequências Repetidas TerminaisRESUMO
Polyoma BK virus (PBK) is a prevalent human specific virus and the cause of several malignancies in human. The main mechanisms used by PBK to induce/stimulate human cancers are yet to be clarified but it has been proposed that PBK may use several mechanisms to induce/stimulate cancers in human including attenuation of immune responses via up-regulation of immunosuppressor molecules. Transforming growth factor beta (TGF-ß) is a key multifunctional factor from modulation of immunosurveillance to angiogenesis. The key roles of TGF-ß in the progression of Th17 and T regulatory subsets, the most important immune cells involved in development of cancers, have been demonstrated. Thus, this review article aims to describe the mechanisms used by PBK in induction/stimulation of human cancers in TGF-ß dependent manner..
Assuntos
Vírus BK , Tolerância Imunológica , Neoplasias/virologia , Infecções por Polyomavirus/complicações , Fator de Crescimento Transformador beta/fisiologia , Infecções Tumorais por Vírus/complicações , Carcinogênese , Humanos , Neoplasias/imunologiaRESUMO
BACKGROUND: miR-126 is a key regulator of oncogenic processes. It is functionally linked to cellular proliferation, survival and migration. Vascular endothelial growth factor A (VEGF-A), which is regarded as a tumorgenesis activator, could directly target miR-126 in several tumors. However, the mechanism in esophageal cancer remains unclear. METHODS AND RESULTS: In this study, the expression of miR-126 and VEGF-A were assessed in esophageal cancer tissues and esophageal cancer cell lines. We found that miR-126 has significantly lower expression in esophageal cancer tissues and esophageal cancer cell lines than in healthy tissues, while the expression of VEGF-A is high. Luciferase reporter assays were performed to investigate the relationship between VEGF-A and miR-126. We confirmed that VEGF-A is a target for miR-126. Furthermore, the proliferation of esophageal cancer cells with miR-126 overexpression and miR-126 knockdown was monitored using the MTT assay. The results showed that miR-126 could inhibit esophageal cancer cell proliferation in vitro. The effect of miR-126 was also detected in BALB/c nude mice with transplanted esophageal cancer cells. In vivo study showed that tumor growth was significantly suppressed by miR-126 overexpression. CONCLUSIONS: We believe that restoring miR-126 levels may be a promising therapeutic approach in cases of esophageal cancer.
Assuntos
Neoplasias Esofágicas/metabolismo , Genes Supressores de Tumor , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Progressão da Doença , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
This article discusses a rare case of coexistent meningiomas and Primary familial brain calcification (PFBC). PFBC is a neurodegenerative disease characterized by brain calcifications and a variety of neuropsychiatric symptoms and signs, with pathogenic variants in specific genes. The study explores the potential link between PFBC and meningiomas, highlighting shared features like intralesional calcifications and common genes such as MEA6. The article also revisits PFBC patients developing other brain tumors, particularly gliomas, emphasizing the intersection of oncogenes like PDGFB and PDGFRB in both calcifications and tumor progression. In recent investigations, attention has extended beyond brain tumors to breast cancer metastasis, unveiling a noteworthy connection. These findings suggest a broader connection between brain calcifications and tumors, encouraging a reevaluation of therapeutic approaches for PFBC.
Assuntos
Neoplasias Encefálicas , Calcinose , Meningioma , Humanos , Calcinose/genética , Calcinose/patologia , Meningioma/genética , Meningioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Feminino , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Encefalopatias/genética , Encefalopatias/patologia , Encefalopatias/metabolismoRESUMO
BACKGROUND: In the past decade, SETBP1 has attracted a lot of interest on that the same gene with different type or level (germline or somatic) of variants could provoke different pathologic consequences such as Schinzel-Giedon syndrome, SETBP1 Haploinsufficiency Disorder (SETBP1-HD) and myeloid malignancies. Whole exome sequencing was conducted to detect the etiology of a pregnant woman with mental retardation. As a new oncogene and potential marker of myeloid malignancies, somatic SETBP1 variants in other cancers were rarely studied. We performed a pan-cancer analysis of SETBP1 gene in different cancers for the first time. RESULTS: A novel heterozygous mutation of the SETBP1 gene (c.1724_1727del, p.D575Vfs*4) was found in the patient and the fetus and the mutation was predicted to result in a truncated protein. Reduced SETBP1 expression was associated with SETBP1-HD. The pan-cancer analysis of SETBP1 showed that SETBP1 overexpression should be given special attention in Bladder Urothelial Carcinoma (BLCA) and Stomach adenocarcinoma (STAD). CONCLUSIONS: The de novo SETBP1 mutation was the genetic cause of SETBP1-HD in the family. BLCA and STAD might be related to SETBP1 overexpression.
Assuntos
Anormalidades Múltiplas , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Feminino , Humanos , Anormalidades Múltiplas/genética , Mutação/genética , Proteínas de Transporte/genética , Proteínas Nucleares/genéticaRESUMO
Colon adenocarcinoma is one of the tumors with the highest mortality rate, and tumorigenesis or development of colon adenocarcinoma is the major reason leading to patient death. However, the molecular mechanism and biomarker to predict tumor progression are currently unclear. With the goal of understanding the molecular mechanism and tumor progression, we utilized the TCGA database to identify differentially expressed genes. After identifying the differentially expressed genes among colon adenocarcinoma tissues with different expression levels of LGR4 and normal tissue, protein-protein interaction, gene ontology, pathway enrichment, gene set enrichment analysis, and immune cell infiltration analysis were conducted. Here, the top 10 hub genes, i.e., ALB, F2, APOA2, CYP1A1, SPRR2B, APOA1, APOB, CYP3A4, SST, and GCG, were identified, and relative correlation analysis was conducted. Kaplan-Meier analysis revealed that higher expression of LGR4 correlates with overall survival of colon adenocarcinoma patients, although expression levels of LGR4 in normal tissues are higher than in tumor tissues. Further functional analysis demonstrated that higher expression of LGR4 in colon adenocarcinoma may be linked to up-regulate metabolism-related pathways, for example, the cholesterol biosynthesis pathway. These results were confirmed by gene set enrichment analysis. Immune cell infiltration analysis clearly showed that the infiltration percentage of T cells was significantly higher than other immune cells, and TIMER analysis revealed a positive correlation between T-cell infiltration and LGR4 expression. Finally, COAD cancer cells, Caco-2, were employed to be incubated with squalene and 25-hydroxycholesterol-3-sulfate, and relative experimental results confirmed that the cholesterol biosynthesis pathway involved in modulating the proliferation of COAD tumorigenesis. Our investigation revealed that LGR4 can be an emerging diagnostic and prognostic biomarker for colon adenocarcinoma by affecting metabolism-related pathways.
Assuntos
Adenocarcinoma , Neoplasias do Colo , Receptores Acoplados a Proteínas G , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Células CACO-2 , Carcinogênese/genética , Colesterol , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Asymmetric cell division (ACD) gives rise to two daughter cells with different fates after mitosis and is a fundamental process for generating cell diversity and for the maintenance of the stem cell population. The cancer stem cell (CSC) theory suggests that CSCs with dysregulated self-renewal and asymmetric cell division serve as a source of intra-tumoral heterogeneity. This heterogeneity complicates the diagnosis and treatment of cancer patients, because CSCs can give rise to aggressive clones that are metastatic and insensitive to multiple drugs, or to dormant tumor cells that are difficult to detect. Here, we review the regulatory mechanisms and biological significance of asymmetric division in tumor cells, with a focus on ACD-induced tumor heterogeneity in early tumorigenesis and cancer progression. We will also discuss how dissecting the relationship between ACD and cancer may help us find new approaches for combatting this heterogeneity.
RESUMO
The transcription factor nuclear factor-κB (NF-κB) is a critical regulator of the immune response, inflammation, cell growth, and survival. Canonical and non-canonical pathways, two NF-κB pathways, are activated through diverse stimulators and receptors. NF-κB activity is dysregulated in various inflammation-related diseases and cancers. It was found that the persistent NF-κB activity has a major role in proliferation, apoptosis inhibition, metastasis, and cell cycle disruption in cancer cells and also the survival of cancer stem cells (CSCs) within the tumors. Therefore, suppression of the NF-κB pathway could be a promising therapeutic target for cancer therapy. Different biological inhibitors (e.g., peptides, small molecules, antisense oligonucleotides (ASOs), and antibodies (Abs)) have been demonstrated to inhibit the NF-κB pathway. Low stability in the circulation system, weak availability, and poor cellular uptake of some inhibitors limit their therapeutic applications. To address these drawbacks nanocarrier systems are often formulated and applied in drug delivery as an effective therapeutic approach. Targeted nanosystems (i.e., small molecules, peptides, Abs and Aptamers (Aps) conjugated nanocarriers), as well as smart responsive nanocarriers, can improve the efficiency of therapeutics while reducing the off-target toxicity. This review describes the NF-κB signaling pathways and mechanisms of their over-activation in tumor initiation and progression. The NF-κB inhibitors and their clinical applications are also discussed. It also overviews different nanocarriers used as robust vehicles for the delivery of NF-κB inhibitors and anti-tumor agents to improve the bioavailability of drugs and selective targeting of cancer cells to repress NF-κB activity in tumor cells.
Assuntos
Nanopartículas , Neoplasias , Humanos , NF-kappa B/metabolismo , Preparações Farmacêuticas , Transdução de Sinais/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas I-kappa B/metabolismo , Sistemas de Liberação de Medicamentos , Inflamação/tratamento farmacológicoRESUMO
Since the pandemic's onset, a growing population of individuals has recovered from SARS-CoV-2 infection and its long-term effects in some of the convalescents are gradually being reported. Although the precise etiopathogenesis of post-acute COVID-19 sequelae (PACS) remains elusive, the mainly accepted rationale is that SARS-CoV-2 exerts long-lasting immunomodulatory effects, promotes chronic low-grade inflammation, and causes irreversible tissue damage. So far, several viruses have been causally linked to human oncogenesis, whereas chronic inflammation and immune escape are thought to be the leading oncogenic mechanisms. Excessive cytokine release, impaired T-cell responses, aberrant activation of regulatory signaling pathways (e.g., JAK-STAT, MAPK, NF-kB), and tissue damage, hallmarks of COVID-19 disease course, are also present in the tumor microenvironment. Therefore, the intersection of COVID-19 and cancer is partially recognized and the long-term effects of the virus on oncogenesis and cancer progression have not been explored yet. Herein, we present an up-to-date review of the current literature regarding COVID-19 and cancer cross-talk, as well as the oncogenic pathways stimulated by SARS-CoV-2.
RESUMO
Recent developments have given more credence into the brain-gut-microbiota axis and its role in the development of tumor genesis. The microbiota have multiple functions including maintenance of the epithelial barrier, immune response, digestion, cortisol regulation, and control of neurotransmitters and their metabolism [e.g., serotonin, dopamine, noradrenaline and gamma-Aminobutyric Acid (GABA)]. Changes in gut microbiota can interfere with homeostasis leading to dysbiosis microbiota, which is linked to colorectal cancer. Microbiota composition can cause pronounced effect on medical interventions including medications, chemotherapy, and radiation. Altered primary immune system is associated with microbiota disassociation and development of colorectal cancer. This article reviews the current research in brain-gut axis with focus on microbiota and its role in the development of gastrointestinal cancers. We conducted a literature review on PubMed, Cochrane, and Science direct using English language. We begin by reviewing the brain-gut axis and its function and then discuss its effect on the development of gastrointestinal cancers. We reviewed 70 manuscripts and found association between microbiota dysfunction and development of colorectal cancers predisposing to psychiatric manifestations. Lasting disturbances in the microbiota can lead to systemic inflammation with implications on disease development or treatment modifications. These disruptions of the intestinal flora can play an important role in the pathogenesis of cancers. Most psychological reactions to cancer are similar across cancer types but each cancer when examined individually has its own unique features associated with it. Correlation between fear of recurrence and the level of pathological distress is viewed as an indicator of overall adjustment to cancer survival.
RESUMO
INTRODUCTION: Primary rectal choriocarcinoma is an extremely rare malignancy. The association of these neoplasms in patients with inflammatory bowel disease (IBD) has not been reported. PRESENTATION OF CASE: A 34-year-old female with history of Ulcerative Colitis (UC) gave birth to a male fetus. She had postpartum bleeding and high level of beta-human chorionic gonadotropin (ßhCG) was detected. Although initial investigations failed to confirm molar pregnancy, abnormal uterine bleeding and high ßhCG level necessitate chemotherapy administration. She did not respond to chemotherapy sessions accordingly. Meanwhile, the patient experienced rectorrhagia and colonoscopy revealed a firm submucosal polypoid lesion 8-10 cm from the anal verge. The multidisciplinary team candidate the patient for total proctocolectomy and ileal pouch anal anastomosis. Although postoperative course was uneventful and ßhCG level dropped but it showed a rising pattern in follow ups. Chemotherapy was planned but there was not suitable response. Unfortunately, the patient passed away 20 months after the initial diagnosis. DISCUSSION: Pathology report indicated the coexistence of moderately differentiated tubular adenocarcinoma and choriocarcinoma. We assume previous history of UC might have put her at higher susceptibility to develop carcinoma and this poorly differentiated carcinoma has led to choriocarcinoma. Considering the fact that in most cases of colorectal choriocarcinoma, choriocarcinomatous differentiation was found alongside colonic adenocarcinoma made dedifferentiation theory to be the most acceptable explanation. CONCLUSION: The adenocarcinoma of the colon and rectum in the setting of IBD may become so dedifferentiated that gain some characteristics of germ cell tumors.
RESUMO
Tumor necrosis factor receptor-associated protein 1 (TRAP1), a molecular chaperone, is a major member of the mitochondrial heat shock protein 90 (Hsp90) family. Studies have shown that TRAP1 can prevent hypoxia-induced damage to cardiomyocytes, maintain cardiomyocytes viability and mitochondrial membrane potential, and protect cardiomyocytes. In addition, it can also protect astrocytes from ischemic damage in vitro. In recent years, there have been many new discoveries in tumors. The abnormal expression of TRAP1 is closely related to the occurrence and development of various tumors. TRAP1 protein seems to be a central regulatory protein, involved in the activation of various oncogenic proteins and signaling pathways, and has a balanced function at tumor transformation and the intersection of different metabolic processes. Targeting its chaperone activity and molecular interactions can destroy the metabolism and survival adaptability of tumor cells, paving the way for the development of highly selective mitochondrial anti-tumor drugs. Moreover, the combination of TRAP1 inhibition and current traditional cancer therapies has shown promising applications. These findings have important implications for the diagnosis and treatment of tumors. Therefore, we reviewed the recently identified functions of the molecular chaperone TRAP1 in cancer development and progression, as well as the discovery and recent advances in selective TRAP1 inhibitors as anticancer drug therapies, opening up new attractive prospects for exploring strategies for targeting TRAP1 as a tumor cell target.
Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Chaperonas Moleculares/efeitos dos fármacos , Neoplasias/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/fisiologia , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Neoplasias/tratamento farmacológicoRESUMO
Accurate regulation of cell cycle is important for normal tissue development and homeostasis. RCC2 (Regulator of Chromosome Condensation 2) play a role as chromosomal passenger complex (CPC) implicated in all cell cycle phases. RCC2 was initially identified as Ran guanine exchange factor (GEF) for small G proteins. Therefore, RCC2 plays a key role in oncogenesis of most cancers. RCC2 is implicated in Colorectal Cancer (CRC), Lung Adenocarcinoma (LUAD), breast cancer, and ovarian cancer. Expression level of RCC2 protein determines regulation of tumor cell proliferation, invasion, metastasis, and radio-chemotherapeutic resistance. In this review, we explored proteins that interact with RCC2 to modulate tumor development and cancer therapeutic resistance by regulation of cell cycle process through various signaling pathways.
RESUMO
Background: Hypoxic microenvironment inside the tumor forces tumor cells to up-regulate the glycolytic pathway to maintain a sufficient energy supply for tumor growth. Activation of HIF1α under hypoxia condition is able to regulate the expression of glycolysis-related genes, and results in the proliferation and metastasis of cancer cells. However, the mechanism underlying HIF1α activation and glycolysis induction by hypoxia remains unclear. The present study is aimed to test if SENP1 regulates the glycolysis of prostate cancer cells (CaP) by improving stability of HIF1α protein. Methods: We employed qPCR and western blotting assay to analyze expression of HIF1α and SENP1. Glucose uptake assay, lactate production assay, LDH release assay and ATP production assay were utilized to evaluate cell glycolysis. The interaction between SENP1 and HIF1α was verified by co-immunoprecipitation assay. Results: We found that hypoxia condition improves glucose uptake and lactate production to sustain sufficient ATP for cellular activity in prostatic carcinoma cells. The expression of SENP1 mRNA was significantly increased in human prostatic carcinoma cell lines after exposure to hypoxia, accompanied by the up-regulation of HIF1α. Furthermore, forced expression of SENP1 was shown to regulate the glycolysis in prostatic carcinoma cells by stabilizing HIF1α. The up-regulation of SENP1 promotes tumor cell proliferation and tumorgenesis by interacting with HIF1α which was deSUMOylated and sequentially leading to a "Warburg effect". Conclusion: SENP1 interacts with HIF1α to regulate glycolysis and proliferation of prostatic carcinoma cells under hypoxia condition, which provides new insights into prostatic carcinoma therapy.
Assuntos
Cisteína Endopeptidases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunoprecipitação , L-Lactato Desidrogenase/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
This study aimed to investigate the role of circRNAs encoded by PPARα in regulating the pathogenesis processes of hepatocellular carcinoma (HCC). Comprehensive analysis of 3 circular RNA databases revealed multiple circular RNAs within the PPARα gene. The candidate circRNAs were first structurally validated via specific convergent and divergent primer amplification, RNase R treatment, and Sanger sequencing. According to a further validation of the cell viability assay, cell cycle and apoptosis, and transwell assays, the circRNAs correlated to PPARα were obtained. Their functions in tumorigenesis were further validated via the subcutaneous tumor model and the migration model in nude mice. We showed that the overexpression of circ5379-6 decreased cell proliferation, inhibited cell migration and invasion, and induced cell apoptosis in the HCC cell lines. Consistently, in vivo studies in nude mice confirmed that the overexpression of circ5379-6 effectively inhibited the tumorigenesis and metastasis of HCC. We conclude that circ5379-6 plays a role similar to its linear counterpart PPARα to inhibit HCC tumorigenesis and progression.
RESUMO
Transcription factor forkhead box Q1 (FOXQ1), a member of the forkhead box superfamily, has been involved in various biological processes and plays important roles in tumor initiation and progression. The FOXQ1 protein activated transcription of target genes directly by binding to the promoters of target genes or indirectly by interacting with other transcription factors. FOXQ1 affected the initiation, progression, invasion, and metastasis of many kinds of tumor by promoting the epithelial-mesenchymal transition, regulating cell cycle, promoting cell proliferation, regulating senescence-associated inflammation, and activating many cellular signal pathways. In this review, we have focused on the possible molecular mechanisms for FOXQ1 gene in tumor initiation and progression. Medline literature review related to this subject was performed by the electronically retrieval with the keywords "forkhead box Q1" and "tumor" on PubMed for including previous publications, and then, it further reviewed reference articles on the biological function of FOXQ1 gene and target genes transcription directly regulated by FOXQ1.
Assuntos
Transformação Celular Neoplásica/genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Neoplasias/genética , Animais , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
Emerging evidence indicates that microRNAs, a class of small and well-conserved noncoding RNAs, participate in many physiological and pathological processes. RNase III endonuclease DICER is one of the key enzymes for microRNA biogenesis. Here, we found that DICER was downregulated in tumor samples of colorectal cancer (CRC) patients at both mRNA and protein levels. Importantly, intestinal epithelial cell (IEC)-specific deletion of Dicer mice got more tumors after azoxymethane and dextran sulfate sodium (DSS) administration. Interestingly, IEC-specific deletion of Dicer led to severe chronic inflammation and epithelium layer remodeling in mice with or without DSS administration. Microarray analysis of 3 paired Dicer deletion CRC cell lines showed that miR-324-5p was one of the most significantly decreased miRNAs. In the intestinal epithelium of IEC-specific deletion of Dicer mice, miR-324-5p was also found to be markedly reduced. Mechanistically, miR-324-5p directly bound to the 3'untranslated regions (3'UTRs) of HMG-box containing 3 (HMGXB3) and WAS protein family member 2 (WASF-2), two key proteins participated in cell motility and cytoskeleton remodeling, to suppress their expressions. Intraperitoneal injection of miR-324-5p AgomiR (an agonist of miR-324-5p) curtailed chronic inflammation and cytoskeleton remodeling of colorectal epithelium and restored intestinal barrier function in IEC-specific deletion of Dicer mice induced by DSS. Therefore, our study reveals a key role of a DICER/miR-324-5p/HMGXB3/WASF-2 axis in tumorigenesis of CRC by regulation of cytoskeleton remodeling and maintaining integrity of intestinal barriers.