Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(45): e202312995, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37713602

RESUMO

Two-dimensional (2D) metal-organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2 Br(IN)2 ]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2 /CH4 (selectivity >290 with H2 permeance >520 GPU) and H2 /CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H2 separation.

2.
Angew Chem Int Ed Engl ; 60(41): 22265-22269, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34379858

RESUMO

A two-dimensional (2D) laminar membrane with Li+ selective transport channels is obtained by stacking MXene nanosheets with the introduction of poly(sodium 4-styrene sulfonate) (PSS) with active sulfonate sites, which exhibits excellent Li+ selectivity from ionic mixture solutions of Na+ , K+ , and Mg2+ . The Li+ permeation rate through the MXene@PSS composite membrane is as high as 0.08 mol m-2 h-1 , while the Li+ /Mg2+ , Li+ /Na+ , and Li+ /K+ selectivities are 28, 15.5, and 12.7, respectively. Combining the simulation and experimental results, we further confirm that the highly selective rapid transport of partially dehydrated Li+ within subnanochannels can be attributed to the precisely controlled interlayer spacing and the relatively weaker ion-terminal (-SO3 - ) interaction. This study deepens the understanding of ion-selective permeation in confined channels and provides a general membrane design concept.

3.
ACS Appl Mater Interfaces ; 16(1): 1749-1756, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158375

RESUMO

Montmorillonite (MMT) is known as an ion-exchangeable material, and cations between MMT nanosheets are easily exchanged by other cations. In this work, Ca2+, Fe3+, and Al3+ intercalated two-dimensional MMT membranes were developed by ion exchange of pristine MMT membranes (Na+-MMT), and their ion and dye removal abilities were investigated. The d-spacings of hydrated Fe3+ intercalated MMT membrane (Fe3+-MMT) and Al3+ intercalated MMT membrane (Al3+-MMT) were decreased compared with hydrated Na+-MMT membrane due to the stronger electrostatic attraction between Fe3+/Al3+ and negatively charged MMT nanosheets. Ion and dye sieving performances were improved significantly after the intercalation of Ca2+, Fe3+, and Al3+ into MMT membranes. Al3+-MMT membrane with a thickness of 1.17 µm could exclude 94% of Na+, and its ion sieving performance remained stable during a 120-h ion sieving experiment. Moreover, the rejection rate for rhodamine B (RB) reached 94% using an Al3+-MMT membrane with a thickness of 500 nm, and a water permeance of 73 L m-2 h-1 bar-1 was achieved. The excellent ion and dye sieving performances make it promising in the application of desalination and nanofiltration.

4.
Adv Mater ; 36(30): e2404629, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805571

RESUMO

The special properties of rare earth elements (REE) have effectively broadened their application fields. How to accurately recognize and efficiently separate target rare earth ions with similar radii and chemical properties remains a formidable challenge. Here, precise two-dimensional (2D) heterogeneous channels are constructed using engineered E. coli membranes between graphene oxide (GO) layers. The difference in binding ability and corresponding conformational change between Lanmodulin (LanM) and rare earth ions in the heterogeneous channel allows for precisely recognizing and sieving of scandium ions (Sc3+). The engineered E. coli membranes not only can protect the integrity of structure and functionality of LanM, the rich lipids and sugars, but also help the Escherichia coli (E. coli) membranes closely tile on the GO nanosheets through interaction, preventing swelling and controlling interlayer spacing accurately down to the sub-nanometer. Apparently, the 2D heterogeneous channels showcase excellent selectivity for trivalent ions (SFFe /Sc≈3), especially for Sc3+ ions in REE with high selectivity (SFCe/Sc≈167, SFLa/Sc≈103). The long-term stability and tensile strain tests verify the membrane's outstanding stability. Thus, this simple, efficient, and cost-effective work provides a suggestion for constructing 2D interlayer heterogeneous channels for precise sieving, and this valuable strategy is proposed for the efficient extraction of Sc.

5.
J Hazard Mater ; 452: 131297, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989792

RESUMO

Two-dimensional (2D) membrane materials are widely employed for the accurate sieving of ionic contaminants and are of great importance for water reuse. However, 2D membrane materials often suffer from uneven thickness and surface defects, which severely limit their application prospects. Herein, a continuous 2D membrane (LCUM/D) was prepared using cellulose nanofibrils (CNFs) as the support backbone for the assembled layered double hydroxides (LDHs) and dopamine (DA) as the adhesive. The results demonstrated that LDHs could be uniformly distributed in the network structure of CNFs, and the defects on the membrane surface could be effectively compensated by DA. Simultaneously, the continuous LCUM/D showed excellent rejection (97.18%) and selectivity of ionic contaminants tellurium. Dopamine not only compensated for the surface defects of the 2D membrane and enhanced the rejection of tellurium, but also caused no significant loss of water permeance. Moreover, the LCUM/D exhibited stability, which facilitated its long-term application. In addition, the improved hydrophilicity allowed LCUM/D satisfactory anti-fouling properties. This study provides new dimensional insights into the fabrication of continuous 2D membranes for the removal of ionic contaminant and enhances their application prospects in wastewater treatment.

6.
Nanomaterials (Basel) ; 13(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947731

RESUMO

Two-dimensional (2D) nanomaterial-based membranes feature attractive properties for molecular separation and transport, which exhibit huge potential in various chemical processes. However, the low permeability and bio-fouling of the MXene membrane in water treatment become huge obstacles to its practical application. Herein, a highly permselective and anti-bacterial 2D nanofiltration membrane is fabricated by intercalating a polycation of polydiallyldimethylammonium chloride (PDDA) into the Ti3C2Tx MXene laminar architecture through a facile and patternable electrostatic assembly strategy. As a result, the as-fabricated Ti3C2Tx/PDDA composite membrane exhibits higher water permeance up to 73.4 L m-2 h-1 with a rejection above 94.6% for MgCl2. The resultant membrane simultaneously possesses good resistance to swelling and long-term stability in water environments, even after 8 h. Additionally, the Ti3C2Tx/PDDA membrane also demonstrates a high flux recovery ratio of nearly 96.1% to bovine serum albumin proteins after being cleaned. More importantly, the current membrane shows excellent anti-adhesive and anti-microbial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), with inhibition rates of 90% and 95% against E. coli and S. aureus, respectively. This holds great potential for the application of the polyelectrolyte-intercalated MXene membrane in serving as a promising platform to separate molecules and/or ions in an aquatic environment.

7.
ACS Appl Mater Interfaces ; 13(48): 58076-58084, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34816708

RESUMO

Two-dimensional (2D) membranes as a new type of water filtration membrane have shown great potential in water separation and purification. However, their long-term stability under cross-flow conditions and their antifouling property are two main concerns for practical separation and purification processes. In this work, a strategy of nanoparticle bridges based on amorphous TiO2 is developed to link adjacent WS2 nanosheets on a WS2 membrane surface, leading to a strong membrane surface with excellent stability during 204 h of continuous cross-flow filtration. Moreover, the amorphous TiO2 bridges also form a TiO2/WS2 heterojunction on the WS2 membrane surface, exhibiting an impressive photocatalysis-driving self-cleaning property by pollutant photodegradation. And the flux recovery ratio (FRR) exceeds 95% after three cycles of separation experiments. The excellent long-term stability and photocatalysis-driving self-cleaning property of the WS2/TiO2 membrane provide a new approach to construct robust 2D membranes.

8.
Membranes (Basel) ; 11(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34436384

RESUMO

Novel two-dimensional (2D) membranes have been utilized in water purification or seawater desalination due to their highly designable structure. However, they usually suffer from swelling problems when immersed in solution, which limits their further applications. In this study, 2D cross-linked MXene/GO composite membranes supported on porous polyamide substrates are proposed to improve the antiswelling property and enhance the ion-sieving performance. Transition-metal carbide (MXene) nanosheets were intercalated into GO nanosheets, where the carboxyl groups of GO combined the neighboring hydroxyl terminal groups of MXene with the formation of -COO- bonds between GO and MXene nanosheets via the cross-linking reaction (-OH + -COOH = -COO- + H2O) after heat treatment. The permeation rates of the metal ions (Li+, Na+, K+, Al3+) through the cross-linked MXene/GO composite membrane were 7-40 times lower than those through the pristine MXene/GO membrane. In addition, the cross-linked MXene/GO composite membrane showed excellent Na+ rejection performance (99.3%), which was significantly higher than that through pristine MXene/GO composite membranes (80.8%), showing improved ion exclusion performance. Such a strategy represents a new avenue to develop 2D material-derived high-performance membranes for water purification.

9.
Biosens Bioelectron ; 150: 111860, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31735623

RESUMO

The orientation and density of biosensing molecules on sensor chip should be precisely controlled to improve sensitivity and ligand-binding capacity. We previously developed a ~30-nm bio-nanocapsule (ZZ-BNC), consisting of the hepatitis B virus envelope L protein fused with the tandem form of protein A-derived IgG Fc-binding Z domain (ZZ-L protein). This is used as a robust nanoparticle scaffold to enhance the sensitivity and ligand-binding capacity of IgGs and Fc-fused sensing molecules (Fc-fused receptors). However, due to their rigid particle structure, the surface density of ZZ-L proteins could not be optimized for biosensor functions, and useless ZZ-L proteins become stuck between ZZ-BNC and the sensor chip. Here, we have developed a planar lipid membrane embedded with ZZ-L micelles (ZZ-L membrane), which could modify the surface of any biosensor chip with a controlled density of ZZ-L proteins. Compared with ZZ-BNC, the sensitivity and ligand-binding capacity of IgGs were enhanced about 10-fold with the ZZ-L membrane. Furthermore, the immobilized IgGs could capture their respective antigens almost stoichiometrically, indicating that ZZ-L membrane is the most ideal scaffold for Fc-fused sensing molecules in terms of both clustering and oriented immobilization.


Assuntos
Técnicas Biossensoriais , Imunoglobulina G/química , Nanocápsulas/química , Proteínas do Envelope Viral/química , Humanos , Fragmentos Fc das Imunoglobulinas , Ligantes , Lipídeos/química , Membranas/química
10.
Nanoscale Res Lett ; 15(1): 204, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140177

RESUMO

Recent advances in the development of two-dimensional (2D) materials have facilitated a wide variety of surface chemical characteristics obtained by composing atomic species, pore functionalization, etc. The present study focused on how chemical characteristics such as hydrophilicity affects the water transport rate in hexagonal 2D membranes. The membrane-water interaction strength was tuned to change the hydrophilicity, and the sub-nanometer pore was used to investigate single-file flux, which is known to retain excellent salt rejection. Due to the dewetting behavior of the hydrophobic pore, the water flux was zero or nominal below the threshold interaction strength. Above the threshold interaction strength, water flux decreased with an increase in interaction strength. From the potential of mean force analysis and diffusion coefficient calculations, the proximal region of the pore entrance was found to be the dominant factor degrading water flux at the highly hydrophilic pore. Furthermore, the superiority of 2D membranes over 3D membranes appeared to depend on the interaction strength. The present findings will have implications in the design of 2D membranes to retain a high water filtration rate.

11.
ACS Appl Mater Interfaces ; 8(13): 8694-701, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26964618

RESUMO

Ultrathin membranes with intrinsic pores are highly desirable for gas separation applications, because of their controllable pore sizes and homogeneous pore distribution and their intrinsic capacity for high flux. Two-dimensional (2D) covalent organic frameworks (COFs) with layered structures have periodically distributed uniform pores and can be exfoliated into ultrathin nanosheets. As a representative of 2D COFs, a monolayer triazine-based CTF-0 membrane is proposed in this work for effective separation of helium and purification of hydrogen on the basis of first-principles calculations. With the aid of diffusion barrier calculations, it was found that a monolayer CTF-0 membrane can exhibit exceptionally high He and H2 selectivities over Ne, CO2, Ar, N2, CO, and CH4, and the He and H2 permeances are excellent at appropriate temperatures, superior to those of conventional carbon and silica membranes. These observations demonstrate that a monolayer CTF-0 membrane may be potentially useful for helium separation and hydrogen purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA